scholarly journals Mean and turbulent characteristics of a bottom mixing‐layer forced by a strong surface tide and large amplitude internal waves

Author(s):  
A. Zulberti ◽  
N. L. Jones ◽  
M. D. Rayson ◽  
G. N. Ivey
PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81834 ◽  
Author(s):  
Carin Jantzen ◽  
Gertraud M. Schmidt ◽  
Christian Wild ◽  
Cornelia Roder ◽  
Somkiat Khokiattiwong ◽  
...  

2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


2014 ◽  
Vol 126 ◽  
pp. 109-120 ◽  
Author(s):  
Sachihiko Itoh ◽  
Yuki Tanaka ◽  
Satoshi Osafune ◽  
Ichiro Yasuda ◽  
Masahiro Yagi ◽  
...  

2012 ◽  
Vol 19 (2) ◽  
pp. 265-272 ◽  
Author(s):  
N. Gavrilov ◽  
V. Liapidevskii ◽  
K. Gavrilova

Abstract. The evolution of large amplitude internal waves propagating towards the shore and more specifically the run up phase over the "swash" zone is considered. The mathematical model describing the generation, interaction, and decaying of solitary internal waves of the second mode in the interlayer is proposed. The exact solution specifying the shape of solitary waves symmetric with respect to the unperturbed interface is constructed. It is shown that, taking into account the friction on interfaces in the mathematical model, it is possible to describe adequately the change in the phase and amplitude characteristics of two solitary waves moving towards each other before and after their interaction. It is demonstrated that propagation of large amplitude solitary internal waves of depression over a shelf could be simulated in laboratory experiments by internal symmetric solitary waves of the second mode.


2011 ◽  
Vol 18 (2) ◽  
pp. 193-208 ◽  
Author(s):  
M. J. Mercier ◽  
R. Vasseur ◽  
T. Dauxois

Abstract. We revisit experimental studies performed by Ekman on dead-water (Ekman, 1904) using modern techniques in order to present new insights on this peculiar phenomenon. We extend its description to more general situations such as a three-layer fluid or a linearly stratified fluid in presence of a pycnocline, showing the robustness of dead-water phenomenon. We observe large amplitude nonlinear internal waves which are coupled to the boat dynamics, and we emphasize that the modeling of the wave-induced drag requires more analysis, taking into account nonlinear effects. Dedicated to Fridtjöf Nansen born 150 yr ago (10 October 1861).


1984 ◽  
Vol 138 ◽  
pp. 185-196 ◽  
Author(s):  
S. A. Thorpe

Experiments are made in which a stratified shear flow, accelerating from rest and containing a level where the direction of flow reverses, is generated over a rough floor. The roughness elements consist of parallel square bars set at regular intervals normal to the direction of flow. Radiating internal gravity waves are generated in the early stages of flow, whilst flow separation behind the bars produces turbulent mixing regions which eventually amalgamate and entirely cover the floor. This turbulent layer spreads vertically less rapidly than the internal waves. Observed features of the waves are compared with those predicted by a model in which the floor is assumed to be sinusoidal, and fair agreement is found for the amplitude, phase and vertical wavenumber of the waves, even when the latter becomes large.The rate of spread of the turbulent layer depends on the separation of the bars. Some interaction between the turbulence and the internal waves occurs near the edge of the turbulent layer. Wave-breaking is prevalent and the vertical scale of the waves is affected by turbulent eddies. The radiating internal waves are suppressed by replacing the bars by an array of square cubes, but there is continued evidence of features resembling internal waves near the boundary of the turbulent region. Structures are observed which bear some similarities to those found at the foot of the near-surface mixing layer in a lake.


1986 ◽  
Vol 55 (1) ◽  
pp. 128-144 ◽  
Author(s):  
Mitsuaki Funakoshi ◽  
Masayuki Oikawa

Sign in / Sign up

Export Citation Format

Share Document