Influence of Different ENSO Types on Tropical Cyclone Rapid Intensification over the Western North Pacific

Author(s):  
Yi‐Peng Guo ◽  
Zhe‐Min Tan
SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 1-5 ◽  
Author(s):  
Udai Shimada ◽  
Munehiko Yamaguchi ◽  
Shuuji Nishimura

2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2018 ◽  
Vol 33 (3) ◽  
pp. 799-811 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Kate D. Musgrave

Abstract This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.


2007 ◽  
Vol 135 (1) ◽  
pp. 38-59 ◽  
Author(s):  
Zhihua Zeng ◽  
Yuqing Wang ◽  
Chun-Chieh Wu

Abstract The effects of two environmental dynamical factors, namely, the transitional speed and vertical wind shear, on tropical cyclone (TC) intensification, intensity, and lifetime peak intensity were analyzed based on observations in the western North Pacific during 1981–2003. In general, both the fast translation and strong vertical shear are negative to both TC intensification and the lifetime peak intensity. Both the very intense TCs and the TCs with rapid intensification rate are found only to occur in a narrow range of translational speeds between 3 and 8 m s−1, and in relatively weak vertical shear. The overwhelming majority of western North Pacific TCs reach their lifetime peak intensity just prior to recurvature where their environmental steering flow and vertical shear are both weak. The results show that few TCs intensified when they moved faster than 15 m s−1, or when their large-scale environmental vertical shear is larger than 20 m s−1. The intensification rate of TCs is found to increase with decreasing vertical shear while the majority of the weakening storms experience relatively strong vertical shear. Overall, strong vertical shear prohibits rapid intensification and most likely results in the weakening of TCs, similar to the fast storm translation. Based on the statistical analysis, a new empirical maximum potential intensity (MPI) has been developed, which includes the combined negative effect of translational speed and vertical shear as the environmental dynamical control in addition to the positive contribution of SST and the outflow temperature as the thermodynamic control. The new empirical MPI can not only provide more accurate estimation of TC maximum intensity but also better explain the observed behavior of the TC maximum intensity and help explain the thermodynamic and environmental dynamical controls of TC intensity. Implications of the new empirical MPI are discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 847
Author(s):  
Russell L. Elsberry ◽  
Hsiao-Chung Tsai ◽  
Wei-Chia Chin ◽  
Timothy P. Marchok

When the environmental conditions over the western North Pacific are favorable for tropical cyclone formation, a rapid intensification event will frequently follow formation. In this extension of our combined three-stage 7-day Weighted Analog Intensity Pacific prediction technique, the European Centre for Medium-range Weather Prediction ensemble predictions of the warm core magnitudes of pre-tropical cyclone circulations are utilized to define the Time-to-Formation (35 knots) and to estimate the Likely Storm Category. If that category is a Typhoon, the bifurcation version of our technique is modified to better predict the peak intensity by selecting only Cluster 1 analog storms with the largest peak intensities that are most likely to have under-gone rapid intensification. A second modification to improve the peak intensity magnitude and timing was to fit a cubic spline curve through the weighted-mean peak intensities of the Cluster 1 analogs. The performance of this modified technique has been evaluated for a sequence of western North Pacific tropical cyclones during 2019 in terms of: (i) Detection time in advance of formation; (ii) Accuracy of Time-to-Formation; (iii) Intensification stage prediction; and (iv) Peak intensity magnitude/timing. This modified technique would provide earlier guidance as to the threat of a Typhoon along the 15-day ensemble storm track forecast, which would be a benefit for risk management officials.


2020 ◽  
Vol 35 (3) ◽  
pp. 1173-1185 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Brian R. Strahl

Abstract In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to operations at the Joint Typhoon Warning Center (JTWC). RIPA probabilistically predicts seven rapid intensification (RI) thresholds over three separate time periods: 25-, 30-, 35-, and 40-kt (1 kt ≈ 0.51 m s−1) increases in 24 h (RI25, RI30, RI35, RI40); 45- and 55-kt increases in 36 h (RI45 and RI55); and 70-kt increases in 48 h (RI70). RIPA’s probabilistic forecasts are also used to produce deterministic forecasts when probabilities exceed 40%, and the latter are included as members of the operational intensity consensus forecast aid. RIPA, initially designed for the western North Pacific, performed remarkably well in all JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever improving suite of intensity forecast guidance. Even so, making real-time operational RIPA forecasts exposed some methodological weaknesses such as overprediction of RI for weak/disorganized systems (i.e., systems with maximum winds less than 35 kt), prediction of RI during landfall, input data reliability, and statistical inconsistencies. Modifications to the deterministic forecasts that address these issues are presented, and newly derived and more statistically consistent models are developed using data from all of JTWC’s AORs. The updated RIPA is tested as it would be run in operations and verified using a 2-yr (2018–19) independent sample. The performance from this test indicates the new RIPA—when compared to its predecessor—has improved probabilistic verification statistics, and similar deterministic skill while using fewer predictors to make forecasts.


2018 ◽  
Vol 31 (21) ◽  
pp. 8917-8930 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Kosuke Ito ◽  
Yoshiaki Miyamoto

This study statistically investigates the characteristics of tropical cyclones (TCs) undergoing rapid intensification (RI) in the western North Pacific in the 37 years from 1979 to 2015 and the relevant atmospheric and oceanic environments. Among 900 TCs, 201 TCs undergoing RI (RI-TCs) are detected by our definition as a wind speed increase of 30 kt (15.4 m s−1) or more in a 24-h period. RI-TCs potentially occur throughout the year, with low variation in RI-TC occurrence rate among the seasons. Conversely, the annual occurrence of RI-TC varies widely. In El Niño years, TCs tend to undergo RI mainly as a result of average locations at the time of tropical storm formation (TSF) being farther east and south, whereas TCs experience RI less frequently in La Niña years. The occurrence rates of RI-TC increased from the 1990s to the late 2000s. The RI onset time is typically 0–66 h after the TSF and the duration that satisfies the criteria of RI is 1–2 days. RI frequently occurs over the zonally elongated area around the eastern Philippine Sea. The development stage and life-span are longer in RI-TCs than in TCs that do not undergo RI. RI-TCs are small at the time of TSF and tend to develop as intense TCs as a result of environmental conditions favorable for TC development, weak vertical wind shear, high convective available potential energy, and tropical cyclone heat potential. The occurrence rates of RI-TCs that make landfall in Japan and the Philippines are higher than in China and Vietnam.


Sign in / Sign up

Export Citation Format

Share Document