scholarly journals An Operational Rapid Intensification Prediction Aid for the Western North Pacific

2018 ◽  
Vol 33 (3) ◽  
pp. 799-811 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Kate D. Musgrave

Abstract This work describes tropical cyclone rapid intensification forecast aids designed for the western North Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods, linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven intensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h (1 kt = 0.514 m s−1). These forecast probabilities are further used to create an equally weighted probability consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational intensity consensus forecast as additional members, resulting in an improved intensity consensus for these important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases, the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the operational intensity consensus significantly reduces the negative forecast biases.

2020 ◽  
Vol 35 (3) ◽  
pp. 1173-1185 ◽  
Author(s):  
John A. Knaff ◽  
Charles R. Sampson ◽  
Brian R. Strahl

Abstract In late 2017, the Rapid Intensification Prediction Aid (RIPA) was transitioned to operations at the Joint Typhoon Warning Center (JTWC). RIPA probabilistically predicts seven rapid intensification (RI) thresholds over three separate time periods: 25-, 30-, 35-, and 40-kt (1 kt ≈ 0.51 m s−1) increases in 24 h (RI25, RI30, RI35, RI40); 45- and 55-kt increases in 36 h (RI45 and RI55); and 70-kt increases in 48 h (RI70). RIPA’s probabilistic forecasts are also used to produce deterministic forecasts when probabilities exceed 40%, and the latter are included as members of the operational intensity consensus forecast aid. RIPA, initially designed for the western North Pacific, performed remarkably well in all JTWC areas of responsibility (AOR) and is now incorporated into JTWC’s ever improving suite of intensity forecast guidance. Even so, making real-time operational RIPA forecasts exposed some methodological weaknesses such as overprediction of RI for weak/disorganized systems (i.e., systems with maximum winds less than 35 kt), prediction of RI during landfall, input data reliability, and statistical inconsistencies. Modifications to the deterministic forecasts that address these issues are presented, and newly derived and more statistically consistent models are developed using data from all of JTWC’s AORs. The updated RIPA is tested as it would be run in operations and verified using a 2-yr (2018–19) independent sample. The performance from this test indicates the new RIPA—when compared to its predecessor—has improved probabilistic verification statistics, and similar deterministic skill while using fewer predictors to make forecasts.


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 1-5 ◽  
Author(s):  
Udai Shimada ◽  
Munehiko Yamaguchi ◽  
Shuuji Nishimura

2015 ◽  
Vol 28 (9) ◽  
pp. 3806-3820 ◽  
Author(s):  
Xidong Wang ◽  
Chunzai Wang ◽  
Liping Zhang ◽  
Xin Wang

Abstract This study investigates the variation of tropical cyclone (TC) rapid intensification (RI) in the western North Pacific (WNP) and its relationship with large-scale climate variability. RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation (PDO), the annual RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). The multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), relative humidity (RHUM), and vertical wind shear (VWS). It is shown that their variations on multidecadal time scales depend on the evolution of the PDO phase. The easterly trade wind is strengthened during the cold PDO phase at low levels, which tends to make equatorial warm water spread northward into the main RI region rsulting from meridional ocean advection associated with Ekman transport. Simultaneously, an anticyclonic wind anomaly is formed in the subtropical gyre of the WNP. This therefore may deepen the depth of the 26°C isotherm and directly increase TCHP over the main RI region. These thermodynamic effects associated with the cold PDO phase greatly support RI occurrence. The reverse is true during the warm PDO phase. The results also indicate that the VWS variability in the low wind shear zone along the monsoon trough may not be critical for the multidecadal modulation of RI events.


2009 ◽  
Vol 24 (2) ◽  
pp. 456-471 ◽  
Author(s):  
Andrea B. Schumacher ◽  
Mark DeMaria ◽  
John A. Knaff

Abstract A new product for estimating the 24-h probability of TC formation in individual 5° × 5° subregions of the North Atlantic, eastern North Pacific, and western North Pacific tropical basins is developed. This product uses environmental and convective parameters computed from best-track tropical cyclone (TC) positions, National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) analysis fields, and water vapor (∼6.7 μm wavelength) imagery from multiple geostationary satellite platforms. The parameters are used in a two-step algorithm applied to the developmental dataset. First, a screening step removes all data points with environmental conditions highly unfavorable to TC formation. Then, a linear discriminant analysis (LDA) is applied to the screened dataset. A probabilistic prediction scheme for TC formation is developed from the results of the LDA. Coefficients computed by the LDA show that the largest contributors to TC formation probability are climatology, 850-hPa circulation, and distance to an existing TC. The product was evaluated by its Brier and relative operating characteristic skill scores and reliability diagrams. These measures show that the algorithm-generated probabilistic forecasts are skillful with respect to climatology, and that there is relatively good agreement between forecast probabilities and observed frequencies. As such, this prediction scheme has been implemented as an operational product called the National Environmental Satellite, Data, and Information Services (NESDIS) Tropical Cyclone Formation Probability (TCFP) product. The TCFP product updates every 6 h and displays plots of TC formation probability and input parameter values on its Web site. At present, the TCFP provides real-time, objective TC formation guidance used by tropical cyclone forecast offices in the Atlantic, eastern Pacific, and western Pacific basins.


2016 ◽  
Vol 144 (12) ◽  
pp. 4533-4551 ◽  
Author(s):  
Jinjie Song ◽  
Philip J. Klotzbach

Abstract Symmetric and wavenumber-1 asymmetric characteristics of western North Pacific tropical cyclone (TC) outer wind structures are compared between best tracks from the Joint Typhoon Warning Center (JTWC) and the Japan Meteorological Agency (JMA) from 2004 to 2014 as well as the Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA) product from 2007 to 2014. Significant linear relationships of averaged wind radii are obtained among datasets, in which both gale-force and storm-force wind radii are generally estimated slightly smaller (much larger) by JTWC (JMA) than by MTCSWA. These correlations are strongly related to TC intensity relationships discussed in earlier work. Moreover, JTWC (JMA) on average represents a smaller (greater) derived shape parameter than MTCSWA does, implying that JTWC (JMA) typically assesses a more compact (less compact) storm than MTCSWA. For the wavenumber-1 asymmetry, large differences among datasets are found regardless of the magnitude or the direction of the longest radius. JTWC estimates more asymmetric storms than JMA, and it provides greater wavenumber-1 asymmetry magnitudes on average. Asymmetric storms are most frequently oriented toward the east, northeast, and north in JTWC and MTCSWA, whereas they are most frequently oriented toward the southeast, east, and northeast in JMA. The direction of the longest gale-force (storm force) wind radius in JTWC is statistically rotated 18° (32°) clockwise to that in JMA. Although the wind radii in JTWC are of higher quality than those in JMA when using MTCSWA as a baseline, there remains a need to provide a consistent and reliable wind radii estimating process among operational centers.


2022 ◽  
pp. 1-59
Author(s):  
Ying Lu ◽  
Xianan Jiang ◽  
Philip J. Klotzbach ◽  
Liguang Wu ◽  
Jian Cao

Abstract A L2 regularized logistic regression model is developed in this study to predict weekly tropical cyclone (TC) genesis over the western North Pacific (WNP) and sub-regions of the WNP including the South China Sea (SCS), the western WNP (WWNP), and the eastern WNP (EWNP). The potential predictors for the TC genesis model include a time-varying TC genesis climatology, the Madden-Julian oscillation (MJO), the quasi-biweekly oscillation (QBWO), and ENSO. The relative importance of the predictors in a constructed L2 regression model is justified by a forward stepwise selection procedure for each region from a 0-week to a 7-week lead. Cross-validated hindcasts are then generated for the corresponding prediction schemes out to a 7-week lead. The TC genesis climatology generally improves the regional model skill, while the importance of intra-seasonal oscillations and ENSO are regionally dependent. Over the WNP, there is increased model skill over the time-varying climatology in predicting weekly TC genesis out to a 4-week lead by including the MJO and QBWO, while ENSO has a limited impact. On a regional scale, ENSO and then the MJO and QBWO respectively, are the two most important predictors over the EWNP and WWNP after the TC genesis climatology. The MJO is found to be the most important predictor over the SCS. The logistic regression model is shown to have comparable reliability and forecast skill scores to the ECMWF dynamical model on intra-seasonal time scales.


Sign in / Sign up

Export Citation Format

Share Document