Hidden stores of organic matter in northern lake ice: Selective retention of terrestrial particles, phytoplankton and labile carbon

Author(s):  
Elise Imbeau ◽  
Warwick F. Vincent ◽  
Maxime Wauthy ◽  
Mathieu Cusson ◽  
Milla Rautio
Soil Research ◽  
1998 ◽  
Vol 36 (4) ◽  
pp. 655 ◽  
Author(s):  
A. Conteh ◽  
G. J. Blair ◽  
I. J. Rochester

The contribution of cotton stubble to the soil organic matter content of Vertisols under cotton production is not well understood. A 3-year experiment was conducted at the Australian Cotton Research Institute to study the effects of burning and incorporating cotton stubble on the recovery of fertiliser nitrogen (N), lint yield, and organic matter levels. This study reports on the changes in soil organic matter fractions as affected by burning and incorporating cotton stubble into the soil. Soil samples collected at the start and end of the 3-year experiment were analysed for total carbon (CT), total N (NT), and δ13C (a measure of 13C/12C isotopic ratios). Labile carbon (CL) was determined by ease of oxidation and non-labile carbon (CNL) was calculated as the difference between CT and CL. Based on the changes in CT, CL, and CNL, a carbon management index (CMI) was calculated. Further analyses were made for total polysaccharides (PT), labile polysaccharides (PL), and light fraction C (LF-C). Stubble management did not significantly affect the NT content of the soil. After 3 years, the stubble-incorporated plots had a significantly higher content of CT, CL, and polysaccharides. Incorporation of stubble into the soil increased the CMI by 41%, whereas burning decreased the CMI by 6%. The amount of LF-C obtained after 3 years in the stubble-incorporated soil was almost double that obtained in the stubble-burnt soil. It was concluded that for sustainable management of soil organic matter in the Vertisols used for cotton production, stubble produced in the system should be incorporated instead of burnt.


2011 ◽  
Vol 8 (7) ◽  
pp. 1911-1923 ◽  
Author(s):  
K. Budge ◽  
J. Leifeld ◽  
E. Hiltbrunner ◽  
J. Fuhrer

Abstract. Alpine soils are expected to contain large amounts of labile carbon (C) which may become a further source of atmospheric carbon dioxide (CO2) as a result of global warming. However, there is little data available on these soils, and understanding of the influence of environmental factors on soil organic matter (SOM) turnover is limited. We extracted 30 cm deep cores from five grassland sites along a small elevation gradient from 2285 to 2653 m a.s.l. in the central Swiss Alps. Our aim was to determine the quantity, allocation, degree of stabilization and mean residence time (MRT) of SOM in relation to site factors such as soil pH, vegetation, and SOM composition. Soil fractions obtained by size and density fractionation revealed a high proportion of labile C in SOM, mostly in the uppermost soil layers. Labile C in the top 20 cm across the gradient ranged from 39.6–57.6 % in comparison to 7.2–29.6 % reported in previous studies for lower elevation soils (810–1960 m a.s.l.). At the highest elevation, MRTs measured by means of radiocarbon dating and turnover modelling, increased between fractions of growing stability from 90 years in free POM (fPOM) to 534 years in the mineral associated fraction (mOM). Depending on elevation and pH, plant community data suggested considerable variation in the quantity and quality of organic matter input, and these patterns could be reflected in the dynamics of soil C. 13C NMR data confirmed a relationship of SOM composition to MRT. While low temperature in alpine environments is likely to be a major cause for the slow turnover rate observed, other factors such as residue quality and soil pH, as well as the combination of all factors, play an important role in causing small scale variability of SOM turnover. Failing to incorporate this interplay of controlling factors into models may impair the performance of models to project SOM responses to environmental change.


2020 ◽  
Vol 56 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Veronika Jílková ◽  
Kateřina Jandová ◽  
Tomáš Cajthaml ◽  
Miloslav Devetter ◽  
Jaroslav Kukla ◽  
...  

CERNE ◽  
2012 ◽  
Vol 18 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Caio Batista Müller ◽  
Oscarlina Lúcia dos Santos Weber ◽  
José Fernando Scaramuzza

The objective of this study was to evaluate carbon input in labile and stable fractions in an ARGISOL of northwestern Brazil under different land use systems. Use systems being evaluated include: forest - MA (reference), agrosilvopasture - TCP (teak, cocoa and pasture); agroforest - TC (teak and cocoa); teak forest at 8 and 5 years - T8 and T5, and pasture - PA. In each system three furrows were made at depths of 0-5 cm, 5-10 cm and 10-20 cm. An area consisting of native vegetation (forest) adjacent to the experiment was sampled and used as control treatment. The use systems MA, T8 and T5 had higher levels of total organic carbon (COT) and the MA system had higher levels of labile carbon (CL) than the other systems, with the exception of TC at a depth of 10-20 cm. In the MA system, COT levels were higher in comparison to use systems TCP, TC and PA while CL levels were higher than the levels observed in use systems TCP and TC. In most cases being analyzed, CL levels were lower than COT levels, therefore this trait can be used as an indicator to assess anthropogenic changes relating to the maintenance or condition of soil organic matter.


Geoderma ◽  
2021 ◽  
Vol 400 ◽  
pp. 115128
Author(s):  
Kristyn B. Numa ◽  
Jasmine M. Robinson ◽  
Vickery L. Arcus ◽  
Louis A. Schipper

Sign in / Sign up

Export Citation Format

Share Document