scholarly journals Strain and Velocity Across the Great Basin Derived From 15‐ka Fault Slip Rates: Implications for Continuous Deformation and Seismic Hazard in the Walker Lane, California‐Nevada, USA

Tectonics ◽  
2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Nadine G. Reitman ◽  
Peter Molnar
2021 ◽  
Vol 9 ◽  
Author(s):  
Jure Atanackov ◽  
Petra Jamšek Rupnik ◽  
Jernej Jež ◽  
Bogomir Celarc ◽  
Matevž Novak ◽  
...  

We present the compilation of a new database of active faults in Slovenia, aiming at introducing geological data for the first time as input for a new national seismic hazard model. The area at the junction of the Alps, the Dinarides, and the Pannonian Basin is moderately seismically active. About a dozen Mw > 5.5 earthquakes have occurred across the national territory in the last millennium, four of which in the instrumental era. The relative paucity of major earthquakes and low to moderate fault slip rates necessitate the use of geologic input for a more representative assessment of seismic hazard. Active fault identification is complicated by complex regional structural setting due to overprinting of different tectonic phases. Additionally, overall high rates of erosion, denudation and slope mass movement processes with rates up to several orders of magnitude larger than fault slip rates obscure the surface definition of faults and traces of activity, making fault parametrization difficult. The presented database includes active, probably active and potentially active faults with trace lengths >5 km, systematically compiled and cataloged from a vast and highly heterogeneous dataset. Input data was mined from published papers, reports, studies, maps, unpublished reports and data from the Geological Survey of Slovenia archives and dedicated studies. All faults in the database are fully parametrized with spatial, geometric, kinematic and activity data with parameter descriptors including data origin and data quality for full traceability of input data. The input dataset was compiled through an extended questionnaire and a set of criteria into a homogenous database. The final database includes 96 faults with 240 segments and is optimized for maximum compatibility with other current maps of active faults at national and EU levels. It is by far the most detailed and advanced map of active faults in Slovenia.


2021 ◽  
Vol 144 ◽  
pp. 101815
Author(s):  
P. Alfaro ◽  
A. Sánchez-Alzola ◽  
I. Martin-Rojas ◽  
F.J. García-Tortosa ◽  
J. Galindo-Zaldívar ◽  
...  

Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 187-217
Author(s):  
Jack N. Williams ◽  
Hassan Mdala ◽  
Åke Fagereng ◽  
Luke N. J. Wedmore ◽  
Juliet Biggs ◽  
...  

Abstract. Seismic hazard is commonly characterised using instrumental seismic records. However, these records are short relative to earthquake repeat times, and extrapolating to estimate seismic hazard can misrepresent the probable location, magnitude, and frequency of future large earthquakes. Although paleoseismology can address this challenge, this approach requires certain geomorphic setting, is resource intensive, and can carry large inherent uncertainties. Here, we outline how fault slip rates and recurrence intervals can be estimated by combining fault geometry, earthquake-scaling relationships, geodetically derived regional strain rates, and geological constraints of regional strain distribution. We apply this approach to southern Malawi, near the southern end of the East African Rift, and where, although no on-fault slip rate measurements exist, there are constraints on strain partitioning between border and intra-basin faults. This has led to the development of the South Malawi Active Fault Database (SMAFD), a geographical database of 23 active fault traces, and the South Malawi Seismogenic Source Database (SMSSD), in which we apply our systems-based approach to estimate earthquake magnitudes and recurrence intervals for the faults compiled in the SMAFD. We estimate earthquake magnitudes of MW 5.4–7.2 for individual fault sections in the SMSSD and MW 5.6–7.8 for whole-fault ruptures. However, low fault slip rates (intermediate estimates ∼ 0.05–0.8 mm/yr) imply long recurrence intervals between events: 102–105 years for border faults and 103–106 years for intra-basin faults. Sensitivity analysis indicates that the large range of these estimates can best be reduced with improved geodetic constraints in southern Malawi. The SMAFD and SMSSD provide a framework for using geological and geodetic information to characterise seismic hazard in regions with few on-fault slip rate measurements, and they could be adapted for use elsewhere in the East African Rift and globally.


Sign in / Sign up

Export Citation Format

Share Document