wasatch fault
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christopher B. DuRoss ◽  
et al.

Geochronological methods, data, and modeling results for samples extracted from the Deep Creek exposure of the Wasatch fault zone, Utah.<br>


2021 ◽  
Author(s):  
Christopher B. DuRoss ◽  
et al.

Geochronological methods, data, and modeling results for samples extracted from the Deep Creek exposure of the Wasatch fault zone, Utah.<br>


2021 ◽  
Vol 1 (1) ◽  
pp. 35-45
Author(s):  
Lee M. Liberty ◽  
James St. Clair ◽  
Adam P. McKean

Abstract Although the Wasatch fault is currently known to have a high-seismic hazard from motion along range-bounding faults, new seismic data reveal faulted and folded 13,000–30,000-yr-old Lake Bonneville strata beneath Salt Lake City (SLC). Coupled with previous excavation trench, borehole, and other geologic and geophysical observations, we conclude that a zone of latest Pleistocene and/or Holocene faulting and folding kinematically links the East Bench and Warm Springs faults through a 3 km wide relay structure and transfer zone. We characterize faults beneath downtown SLC as active, and these faults may displace or deform the ground surface during an earthquake. Through offset but linked faults, our observations support throughgoing ruptures across faults of the Wasatch fault zone (WFZ) and an elevated risk of earthquake-induced building damage.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nathan A. Toké ◽  
Joseph Phillips ◽  
Christopher Langevin ◽  
Emily Kleber ◽  
Christopher B. DuRoss ◽  
...  

How structural segment boundaries modulate earthquake behavior is an important scientific and societal question, especially for the Wasatch fault zone (WFZ) where urban areas lie along multiple fault segments. The extent to which segment boundaries arrest ruptures, host moderate magnitude earthquakes, or transmit ruptures to adjacent fault segments is critical for understanding seismic hazard. To help address this outstanding issue, we conducted a paleoseismic investigation at the Traverse Ridge paleoseismic site (TR site) along the ∼7-km-long Fort Canyon segment boundary, which links the Provo (59 km) and Salt Lake City (40 km) segments of the WFZ. At the TR site, we logged two trenches which were cut across sub-parallel traces of the fault, separated by ∼175 m. Evidence from these exposures leads us to infer that at least 3 to 4 earthquakes have ruptured across the segment boundary in the Holocene. Radiocarbon dating of soil material developed below and above fault scarp colluvial packages and within a filled fissure constrains the age of the events. The most recent event ruptured the southern fault trace between 0.2 and 0.4 ka, the penultimate event ruptured the northern fault trace between 0.6 and 3.4 ka, and two prior events occurred between 1.4 and 6.2 ka (on the southern fault trace) and 7.2 and 8.1 ka (northern fault trace). Colluvial wedge heights of these events ranged from 0.7 to 1.2 m, indicating the segment boundary experiences surface ruptures with more than 1 m of vertical displacement. Given these estimates, we infer that these events were greater than Mw 6.7, with rupture extending across the entire segment boundary and portions of one or both adjacent fault segments. The Holocene recurrence of events at the TR site is lower than the closest paleoseismic sites at the adjacent fault segment endpoints. The contrasts in recurrence rates observed within 15 km of the Fort Canyon fault segment boundary may be explained conceptually by a leaky segment boundary model which permits spillover events, ruptures centered on the segment boundary, and segmented ruptures. The TR site demonstrates the utility of paleoseismology within segment boundaries which, through corroboration of displacement data, can demonstrate rupture connectivity between fault segments and test the validity of rupture models.


Author(s):  
Konstantinos Gkogkas ◽  
Fan-Chi Lin ◽  
Amir A. Allam ◽  
Yadong Wang

Abstract We image the shallow structure across the East Bench segment of the Wasatch fault system in Salt Lake City using ambient noise recorded by a month-long temporary linear seismic array of 32 stations. We first extract Rayleigh-wave signals between 0.4 and 1.1 s period using noise cross correlation. We then apply double beamforming to enhance coherent cross-correlation signals and at the same time measure frequency-dependent phase velocities across the array. For each location, based on available dispersion measurements, we perform an uncertainty-weighted least-squares inversion to obtain a 1D VS model from the surface to 400 m depth. We put all piece-wise continuous 1D models together to construct the final 2D VS model. The model reveals high velocities to the east of the Pleistocene Lake Bonneville shoreline reflecting thinner sediments and low velocities particularly in the top 200 m to the west corresponding to the Salt Lake basin sediments. In addition, there is an ∼400-m-wide low-velocity zone that narrows with depth adjacent to the surface trace of the East Bench fault, which we interpret as a fault-related damage zone. The damage zone is asymmetric, wider on the hanging wall (western) side and with greater velocity reduction. These results provide important constraints on normal-fault earthquake mechanics, Wasatch fault earthquake behavior, and urban seismic hazard in Salt Lake City.


Author(s):  
L.M. Houser ◽  
A.K. Ault ◽  
D.L. Newell ◽  
J.P. Evans ◽  
F‐A. Shen ◽  
...  

Author(s):  
Ivan Wong ◽  
Qimin Wu ◽  
James C. Pechmann

Abstract The 2020 oblique normal-faulting M 5.7 Magna mainshock has provided the best dataset of recorded strong ground motions for an earthquake within the Wasatch Front region, Utah, and the larger Basin and Range Province. We performed a preliminary evaluation of the strong motion and broadband data from this earthquake and compared the data with the Next Generation Attenuation - West2 Project (NGA-West2) ground-motion models (GMMs). The highest horizontal peak ground acceleration (PGA) recorded was 0.43g (geometric mean of the two horizontal components) at a station located above the rupture plane at a rupture distance of 8 km. Eleven stations recorded PGAs &gt;0.20g. Most of these stations are located on the deep sedimentary deposits within the Salt Lake Valley, and all are at rupture distances &lt;20  km. The data compare favorably with the NGA-West2 GMMs, although the expected variability was observed. PGAs exceed the GMM predictions at the closest distances for the source model that we used. The area of the strongest ground shaking encompassed the town of Magna, where some of the heaviest damage occurred. A significant implication of the 2020 Magna earthquake for seismic hazards in the Salt Lake Valley arises from the possibility that this earthquake occurred on the Salt Lake City segment of the Wasatch fault. If so, then the dip of this fault segment must decrease with depth to ≤30°–35°, as proposed by Pang et al. (2020)—at least along the northern part of the segment where the earthquake occurred. Because of the lack of information about the subsurface geometry of the Wasatch fault zone, modeling of this fault zone in seismic hazard analyses has assumed a moderate dip of 50°±15°. Assuming a more shallowly dipping fault results in higher estimates of ground shaking in future large earthquakes on this fault. Alternative interpretations of the Magna earthquake are that it occurred (1) on an auxiliary fault within the Wasatch fault zone or (2) on a listric section of the northern Salt Lake City segment that is not representative of the geometry of the whole fault segment.


Author(s):  
Fred F. Pollitz ◽  
Charles W. Wicks ◽  
Jerry L. Svarc

Abstract The 2020 Magna, Utah, earthquake produced observable crustal deformation over an ∼100  km2 area around the southeast margin of Great Salt Lake, but it did not produce any surface rupture. To obtain a detailed picture of the fault slip, we combine strong-motion seismic waveforms with Global Positioning System static offsets and Interferometric Synthetic Aperture Radar observations to obtain kinematic and static slip models of the event. We sample the regional seismic wavefield with three-component records from 68 stations of the University of Utah Seismograph Stations network. We find that coseismic slip and afterslip, with predominantly normal slip, distributed on a shallowly west-dipping plane, possibly augmented by afterslip on a steeply northeast-dipping plane, best fits the joint dataset. The west-dipping plane locates near previously inferred sources of interseismic creep at depth. Hence, the earthquake may have occurred on the down-dip extension of the Wasatch fault and activated further slip (afterslip) at shallow depth east of the hypocenter. This inferred afterslip may have driven the vigorous aftershock activity that was concentrated east of the hypocenter.


2020 ◽  
Vol 47 (18) ◽  
Author(s):  
Guanning Pang ◽  
Keith D. Koper ◽  
Maria Mesimeri ◽  
Kristine L. Pankow ◽  
Ben Baker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document