scholarly journals The Impact of Wettability and Surface Roughness on Fluid Displacement and Capillary Trapping in 2‐D and 3‐D Porous Media: 2. Combined Effect of Wettability, Surface Roughness, and Pore Space Structure on Trapping Efficiency in Sand Packs and Micromodels

2020 ◽  
Vol 56 (10) ◽  
Author(s):  
Bilal Zulfiqar ◽  
Hannes Vogel ◽  
Yi Ding ◽  
Saeed Golmohammadi ◽  
Matthias Küchler ◽  
...  
2015 ◽  
Vol 51 (11) ◽  
pp. 9094-9111 ◽  
Author(s):  
Helmut Geistlinger ◽  
Iman Ataei‐Dadavi ◽  
Sadjad Mohammadian ◽  
Hans‐Jörg Vogel

2019 ◽  
Vol 55 (11) ◽  
pp. 9905-9925 ◽  
Author(s):  
Ayaz Mehmani ◽  
Shaina Kelly ◽  
Carlos Torres‐Verdín ◽  
Matthew Balhoff

2021 ◽  
Author(s):  
Huhao Gao ◽  
Alexandru Tatomir ◽  
Nikolaos Karadimitriou ◽  
Holger Steeb ◽  
Martin Sauter

<p>Porous media surface roughness strongly influences the transport of solutes during drainage, due to the formation of thick water films (capillary condensation) on the porous media surface. In the case of interfacial-reacted, water-based solutes, these water films increase both the production of the solute, due to the increased number of fluid-fluid interfaces, and the loss of the solute by the retention in the stagnant water films. The retention of the solute in flowing water is described by a mobile mass retention term. This study applies the pore-scale direct simulation with the phase-field method based continuous solute transport (PFM-CST) model on the kinetic interfacial sensitive (KIS) tracer reactive transport during primary drainage in a 2D slit with a wall with variable fractal geometries. The capillary-associated moving interface is found to be larger for rough surfaces than smoother ones. The results confirm that the impact of roughness regarding the film-associated interfacial area can be partly, or totally masked, in a drained slit. It is found that the mobile mass retention term is increased with larger volumes of capillary condensed water films. To conclude, it is also found that the surface roughness factor has a non-monotonic relationship with the overall production rate of solute mass in moving water.</p>


2019 ◽  
Vol 51 (1) ◽  
pp. 429-449 ◽  
Author(s):  
Kamaljit Singh ◽  
Michael Jung ◽  
Martin Brinkmann ◽  
Ralf Seemann

Liquid invasion into a porous medium is a phenomenon of great importance in both nature and technology. Despite its enormous importance, there is a surprisingly sparse understanding of the processes occurring on the scale of individual pores and of how these processes determine the global invasion pattern. In particular, the exact influence of the wettability remains unclear besides the limiting cases of very small or very large contact angles of the invading fluid. Most quantitative pore-scale experiments and theoretical considerations have been conducted in effectively two-dimensional (2D) micromodels and Hele–Shaw geometries. Although these pioneering works helped to unravel some of the physical aspects of the displacement processes, the relevance of 2D models has not always been appreciated for natural porous media. With the availability of X-ray microtomography, 3D imaging has become a standard for exploring pore-scale processes in porous media. Applying advanced postprocessing routines and synchrotron microtomography, researchers can image even slow flow processes in real time and extract relevant material parameters like the contact angle from the interfaces in the pore space. These advances are expected to boost both theoretical and experimental understanding of pore-scale processes in natural porous media.


Sign in / Sign up

Export Citation Format

Share Document