Tracking Pollution in the Breeze, with Trees

Eos ◽  
2021 ◽  
Author(s):  
Nathaniel Scharping

New research outlines how pine needles offer a simple, low-cost means of assessing particulate matter pollution.

Author(s):  
Michaël Canu ◽  
◽  
Boris Gálvis ◽  
Malika Madelin

Deteriorating air quality is of great concern around the world. Recently, citizen scientists, researchers, and many others have used low-cost devices such as the Shinyei PPD42NS dust sensor to measure particulate matter pollution in both developed and under-developed countries. However, few articles exist specifically on the features and performance of these sensors. Some have shown mixed results in terms of precision, accuracy, and repeatability, especially for portable applications. Frequently, users assemble the electronics and the sensors applying simple guidelines, using electric schematics, and coding extraneous algorithms to get questionable data. There is a need to better understand how it works exactly, its limitations and the effect of the program used to interpret the outputs of this sensor. This article provides a short electronic analysis of the Shinyei PPD42NS dust sensor and shows that the internal sensor electronic design (filters and detection stage) as well as the used data processing algorithm, limit its precision and accuracy by generating nonlinearities and biases. These issues avoid some applications like moving ones and imply that the algorithm used to process the sensor signals must be clearly presented in future articles.


2016 ◽  
Author(s):  
Mark J. Potosnak ◽  
Bernhard Beck-Winchatz ◽  
Paul Ritter ◽  
Emily Dawson
Keyword(s):  

2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

Allergy ◽  
2021 ◽  
Author(s):  
Tsung‐Chieh Yao ◽  
Hsin‐Yi Huang ◽  
Wen‐Chi Pan ◽  
Chao‐Yi Wu ◽  
Shun‐Yu Tsai ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Martina Habulan ◽  
Bojan Đurin ◽  
Anita Ptiček Siročić ◽  
Nikola Sakač

Particulate matter (PM) comprises a mixture of chemical compounds and water particles found in the air. The size of suspended particles is directly related to the negative impact on human health and the environment. In this paper, we present an analysis of the PM pollution in urban areas of Croatia. Data on PM10 and PM2.5 concentrations were measured with nine instruments at seven stationary measuring units located in three continental cities, namely Zagreb (the capital), Slavonski Brod, and Osijek, and two cities on the Adriatic coast, namely Rijeka and Dubrovnik. We analyzed an hourly course of PM2.5 and PM10 concentrations and average seasonal PM2.5 and PM10 concentrations from 2017 to 2019. At most measuring stations, maximum concentrations were recorded during autumn and winter, which can be explained by the intensive use of fossil fuels and traffic. Increases in PM concentrations during the summer months at measuring stations in Rijeka and Dubrovnik may be associated with the intensive arrival of tourists by air during the tourist season, and lower PM concentrations during the winter periods may be caused by a milder climate consequently resulting in lower consumption of fossil fuels and use of electric energy for heating.


2021 ◽  
Vol 59 ◽  
pp. 127014
Author(s):  
Tess Ysebaert ◽  
Kyra Koch ◽  
Roeland Samson ◽  
Siegfried Denys

Sign in / Sign up

Export Citation Format

Share Document