Cold anomaly over Nova Zembla‐Ural Mountains: A precursor for the summer long‐lived heat wave in Northeast Asia?

Author(s):  
Xiaoye Yang ◽  
Gang Zeng ◽  
Shiyue Zhang ◽  
Wei‐Chyung Wang ◽  
Vedaste Iyakaremye
2015 ◽  
Vol 6 (2) ◽  
pp. 2273-2322 ◽  
Author(s):  
I. Keggenhoff ◽  
M. Elizbarashvili ◽  
L. King

Abstract. During the last 50 years Georgia experienced a rising number of severe summer heat waves causing increasing heat-health impacts. In this study, the 10 most severe heat waves between 1961 and 2010 and recent changes in heat wave characteristics have been detected from 22 homogenized temperature minimum and maximum series using the Excess Heat Factor (EHF). A composite and Canonical Correlation Analysis (CCA) have been performed to study summer heat wave patterns and their relationships to the selected predictors: mean Sea Level Pressure (SLP), Geopotential Height at 500 mb (Z500), Sea Surface Temperature (SST), Zonal (u-wind500) and Meridional Wind at 500 mb (v-wind500), Vertical Velocity at 500 mb (O500), Outgoing Longwave Radiation (OLR), Relative Humidity (RH500), Precipitation (RR) and Soil Moisture (SM). Most severe heat events during the last 50 years are identified in 2007, 2006 and 1998. Largest significant trend magnitudes for the number, intensity and duration of low and high-impact heat waves have been found during the last 30 years. Significant changes in the heat wave predictors reveal that all relevant surface and atmospheric patterns contributing to heat waves have been intensified between 1961 and 2010. Composite anomalies and CCA patterns provide evidence of a large anticyclonic blocking pattern over the southern Ural Mountains, which attracts warm air masses from the Southwest, enhances subsidence and surface heating, shifts the African Intertropical Convergence Zone (ITCZ) northwards, and causes a northward shift of the subtropical jet. Moreover, pronounced precipitation and soil moisture deficiency throughout Georgia contribute to the heat wave formation and persistence over Georgia. Due to different large- to mesoscale circulation patterns and the local terrain, heat wave effects over Eastern Georgia are dominated by subsidence and surface heating, while convective rainfall and cooling are observed in the West.


2015 ◽  
Vol 143 (3) ◽  
pp. 845-863 ◽  
Author(s):  
Zuowei Xie ◽  
Cholaw Bueh

Abstract A deep and cold vortex circulation often occurs over northeast China. Known as the northeast China cold vortex (NCCV), the phenomenon is most active from May to mid-June and can lead to extremely cold local temperatures. This study used rotated principle component analysis to categorize NCCV events into four types, which were characterized by ridges (or blocks) over the following regions: Lake Baikal (BKL), the Yenisei River valley (YNS), the Ural Mountains (UR), and the Yakutsk–Okhotsk region (YO). On the intraseasonal time scale, it was found that BKL- and YNS-type NCCVs formed when the wave train height anomalies originating from the North Atlantic and Europe propagated to East Asia. In contrast, YO- and UR-type NCCVs formed in conjunction with the development of a meridional dipole pattern over northeast Asia. The existence of a blocking-type circulation over the Yakutsk–Okhotsk region favored maintenance of the NCCV circulation for the long-lived (more than 5 days) NCCV events of the four types. The typical circulation over northeast Asia for the long-lived NCCV event was closely associated with wave breaking, whereas the short-lived (3–5 days) event showed only wave propagation. The YNS-type NCCV caused cold surface air temperatures (SAT) not only over northeast China, but also over central and south China, whereas the other three types led only to regional cold SAT anomalies over northeast China. All four types of NCCVs caused a precipitation increase over northeast China, and this effect was broader for the UR- and YO-type NCCVs than that for BKL- and YNS-type NCCVs.


2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

2018 ◽  
Vol 9 (3) ◽  
pp. 209-221 ◽  
Author(s):  
Seung-Yoon Back ◽  
Sang-Wook Kim ◽  
Myung-Il Jung ◽  
Joon-Woo Roh ◽  
Seok-Woo Son

Sign in / Sign up

Export Citation Format

Share Document