dipole pattern
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 34)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Zhiyan Zuo ◽  
Mingqian Li ◽  
Ning An ◽  
Dong Xiao

AbstractThe two leading modes of winter surface air temperature (SAT) over China during 1961–2017 are a spatially consistent pattern and a north-south dipole pattern. Based on the two leading modes, the characteristics of the extreme cold and warm days in the two patterns, defined by the standard deviation larger than 1.28 or smaller than −1.28 in the time series of the two leading modes, are analyzed. With the increase of winter SAT during 1961–2017, the number of spatially consistent extreme cold days decreased and their occurrence was restricted to late December to early January, whereas the number of spatially consistent extreme warm days increased significantly in January and February. Global warming is associated with an increase in the spatially consistent extreme warm days and a decrease in spatially consistent extreme cold days, but has little relation to the sum of extreme cold and warm days of either the spatially consistent or north-south dipole pattern. The Siberian High (SH) is the main factor controlling the sum of spatially consistent extreme warm and cold days. The strong (weak) SH before (after) the 1990s corresponds to an increase (decrease) in the sum of the spatially consistent extreme warm and cold days. The occurrences of extreme south-cold-north-warm and extreme south-warm-north-cold days are related to the north-south difference of the SH. When the center of the SH is in mid-high latitudes, the extreme south-warm-north-cold (south-cold-north-warm) days occur more (less) often. During the winters of 1961–2017, the total number of extreme cold and warm days of the north-south dipole pattern changes negligibly. The North Atlantic meridional overturning circulation (AMOC) may be the main factor affecting the sum of the extreme cold and warm days of the two types of SAT pattern in China.


2021 ◽  
Vol 34 (19) ◽  
pp. 7927-7942
Author(s):  
Yue Wu ◽  
Xiao-Tong Zheng ◽  
Qi-Wei Sun ◽  
Yu Zhang ◽  
Yan Du ◽  
...  

AbstractOcean salinity plays a crucial role in the upper-ocean stratification and local marine ecosystem. This study reveals that ocean salinity presents notable decadal variability in upper 200 m over the southeast Indian Ocean (SEIO). Previous studies linked this salinity variability with precipitation anomalies over the Indo-Pacific region modulated by the tropical Pacific decadal variability. Here we conduct a quantitative salinity budget analysis and show that, in contrast, oceanic advection, especially the anomalous meridional advection, plays a dominant role in modulating the SEIO salinity on the decadal time scale. The anomalous meridional advection is mainly associated with a zonal dipole pattern of sea level anomaly (SLA) in the south Indian Ocean (SIO). Specifically, positive and negative SLAs in the east and west of the SIO correspond to anomalous southward oceanic current, which transports much fresher seawater from the warm pool into the SEIO and thereby decreases the local upper-ocean salinity, and vice versa. Further investigation reveals that the local anomalous wind stress curl associated with tropical Pacific forcing is responsible for generating the sea level dipole pattern via oceanic Rossby wave adjustment on decadal time scale. This study highlights that the local ocean–atmosphere dynamical adjustment is critical for the decadal salinity variability in the SEIO.


2021 ◽  
Author(s):  
Mikhail M. Latonin ◽  
Leonid P. Bobylev ◽  
Igor L. Bashmachnikov ◽  
Richard Davy

Abstract High-latitude atmospheric meridional energy transport plays a fundamental role in the Arctic climate system. However, despite numerous studies, there are no established clear regional features of the atmospheric energy transport components from a large-scale perspective. This study aims at investigating the internal energy and its instantaneous sensible and latent heat transports in the troposphere through the Arctic gate at 70°N using the high-resolution climate reanalysis ERA5. We have done a regional analysis of the time series of heat fluxes across the zonal section and found by decomposing them into the empirical orthogonal functions that they have opposing features for the Eastern and Western Hemispheres. In particular, the sensible heat transport dominates in the Western Hemisphere, whereas the latent heat transport dominates in the Eastern Hemisphere. Moreover, we detected the existence of an anti-phase dipole pattern for each of these components in the entire troposphere, which is robust because it was retained during both the climate cooling in 1950–1978 and warming in 1979–2019. The hemispheric net fluxes indicate that the Arctic gains internal energy mostly due to the latent heat transport.


2021 ◽  
Author(s):  
Xiaoqing Ma ◽  
Zhicong Yin

Abstract. Surface O3 pollution has become one of the most severe air pollution problems in China, which makes it of practical importance to understand O3 variability. A south-north dipole pattern of summer-mean O3 concentration in the east of China (DP-O3), which were centered at North China (NC) and the Pearl River Delta (PRD) respectively, has been identified from the simulation of a global 3-D chemical transport model for the period 1980–2019. Large-scale anticyclonic (cyclonic) and cyclonic (anticyclonic) anomalies over NC and the PRD resulted in a sharp contrast of meteorological conditions between the above two regions. The enhanced (restrained) photochemistry and natural emissions of O3 precursors in NC and restrained (enhanced) O3 production in the PRD contributed to the DP-O3. Decreased sea ice anomalies near the Franz Josef Land and associated warm sea surface in May enhanced the Rossby-wave source over northern Europe and West Siberia, which eventually induced an anomalous Eurasia-like pattern to influence the formation of the DP-O3. The thermodynamic signals of the southern Indian Ocean dipole were stored in the subsurface and influenced spatial pattern of O3 pollution in the east of China mainly through the Hadley circulation. The physical mechanisms behind the modulation of the atmospheric circulations and related DP-O3 by these two climate anomalies at different latitudes were evidently verified by large-scale ensemble simulations of the earth system model.


2021 ◽  
Author(s):  
shuai li ◽  
Zhiqiang Gong ◽  
Shixuan zhang ◽  
Jie Yang ◽  
Shaobo Qiao ◽  
...  

Abstract This paper investigates the characteristics and causes for the interdecadal change in the relationships between early and late summer rainfall over South China (SC). This study finds that the correlations of the precipitation over SC between June and August shift from weakly positive in 1979 – 1995 to obviously negative in 1996-2019. Further analysis demonstrates that the interdecadal variations of monthly SST anomaly (SSTA) and associated air-sea interactions in June and August account for the decadal variations of the precipitation relationships. During the prior period 1979-1995, the tropical West Indian Ocean (WIO) shows a significant positive SSTA in June, which triggers Kevin waves and an anticyclone circulation over the tropical Northwest Pacific (NWP). The warm and wet air transported by the southwest airflow at the north of the anticyclone provides favorable environmental condition to produce more precipitation over SC region in June. In contrast, the SST dipole pattern with the negative SSTAs in the maritime continent (MC) and positive SSTAs in the tropical Central Pacific (CP) is dominant in August. The SST dipole pattern is inconducive to the formation of anticyclone over SC, causing a weak positive precipitation correlation between June and August. During the latter period 1996-2019, the precipitation over SC in June is the same as that in the prior period as there is no significant decadal change in tropical WIO SST and East Asian circulation. However, an opposite phase of the SST dipole anomaly pattern in MC and the tropical CP is dominant in August during the latter period. Accordingly, the positive feedback mechanism of air-sea interaction leads to the enhancement of local convection activities in MC and the meridional Hadley circulations and the NWP subtropical high, leading to a decrease of precipitation over SC in August. Overall, the decadal variation of the SST dipole anomaly pattern in MC and the tropical CP is the key factor affecting the adjustment of the correlations between June and August precipitation in the two periods.


2021 ◽  
Author(s):  
Martín Jacques-Coper ◽  
Alan Demortier ◽  
Deniz Bozkurt

<p>This study explores the main drivers of heat wave (HW) events in central Chile using state-of-the-art reanalysis data (ERA5) and observations during the extended austral summer season (November to March) for the period 1979-2018. Frequency and intensity aspects of the HW events are considered using the total number of HW events per season and the amplitude, respectively. We first contrast ERA5 with several surface meteorological stations in central Chile to evaluate its ability to capture daily maximum temperature variability and the HW events. We then use synoptic- and large-scale fields and teleconnection patterns to address the most favorable conditions of the HW events from a climatological perspective, as well as for the extreme January 2017 HW event that swept central Chile with temperature records and wildfires. ERA5 tends to capture temperature extremes and the HW events at the inland stations; on the contrary, it has difficulties in capturing the maximum temperature variability at the coastal stations, which is plausible given the complex terrain features and confined coastal climate zone (only ~7% of all grid boxes within central Chile). The HW composite based on ERA5 reveals a mid-level trough-ridge dipole pattern exhibiting a blocking anticyclone on the surface over a large part of southwest South America. Relatively dry and warm easterly flow appears to accompany the anomalous warming in a large part of central Chile. The temporal evolution of the HW events yields a wave-like propagation pattern and enhancement of trough-ridge pattern along the South Pacific. This meridional dipole pattern is found to be largely associated with the Pacific South American pattern. In addition, the Madden-Julian Oscillation (MJO) appears to be a key component of the HW events in central Chile. In particular, while active MJO phases 2 and 7 promote sub-seasonal patterns that favor the South Pacific dipole mode, synoptic anomalies can superimpose on them and favor the formation of a migrating anticyclone over central-southern Chile and coastal lows over central Chile. Agreeing with the climatological findings, the extreme January 2017 HW analysis suggests that an eastward migratory mid-latitude trough-ridge pattern associated with the MJO phase 2 was at work. We highlight that, in addition to large- and synoptic-scale features, sub-synoptic processes such as coastal lows can have an important role in shaping the HW events and can lead to amplification of temperature extremes during the HW events.</p>


2021 ◽  
Author(s):  
Ece Yavuzsoy ◽  
Yasemin Ezber ◽  
Omer Lutfi Sen

<p>El Nino Southern Oscillation (ENSO) is a phenomenon in the equatorial Pacific that could have profound effects on climate around the world. Although ENSO impacts are fairly well-defined for south and north America, Australia and south-eastern Asia, they are not very clear for Euro-Mediterranean region. Some studies indicate that the negative phase of ENSO in Nino3 and Nino3.4 indices have similar effects in the negative phase of North Atlantic Oscillation (NAO).  ENSO impacts and teleconnection patterns are mostly studied using the Nino3.4 index. However, some recent studies indicate that the Nino1+2 index has higher correlation with climate variability over the Euro-Mediterranean region.</p><p>In this study, we investigate impacts of ENSO over the Euro-Mediterranean climate variability and atmospheric dynamics using the Nino1+2 and Nino3.4 indices. Additionally, we also tried to understand if there is any relation between ENSO and the Mediterranean and East Asian troughs. NCEP/NCAR Reanalysis surface air temperature, precipitation and 500 hPa geopotential height datasets and SST-based ENSO indices from ERSSTv4 were used in the analysis for boreal winter (December-January-February) for a period of 1950 - 2019. We utilized the Pearson correlation analysis to reveal the relation between these indices and climate parameters and the composite analysis  to define the pattern differences between the cold and warm phases of the indices.</p><p>Our preliminary findings show that there is a distinct correlation pattern between Nino indices and surface air temperature over the region of interest. Nino1+2 index has a more distinct dipole pattern with a significant positive correlation pole over central Europe and negative pole over north-eastern Africa. However, Nino3.4 indicates a rather zonal correlation dipole pattern whose poles are over northwest Africa (strongly positive) and northeast Africa (negative). It is also found that the Mediterranean trough location is sensitive to the phase of ENSO for both indices. Namely, the Mediterranean trough tends to be in the west of its climatological location for La Nina phases of Nino1+2 and Nino3.4, which affects the distribution of surface temperature and precipitation over the Euro-Mediterranean and Middle East and Northern Africa (MENA) regions. We concluded that the La Nina phase of Nino1+2 seems to play a more distinctive role in the dipole pattern. The surface air temperature is colder over the entire Europe while it is opposite in the Middle East region including Turkey. This dipole pattern is also detected for the La Nina phase of Nino3.4, but it is mostly observed over southwestern Europe and northern Africa. Comparison between the La Nina and El Nino phases of the Nino1+2 index indicates that for the La Nina phase precipitation is larger over the Aegean Sea and Italy and smaller in northern Europe.</p>


2021 ◽  
Author(s):  
Qiong Zhang ◽  
Ellen Berntell ◽  
Qiang Li ◽  
Fredrik Charpentier Ljungqvist

AbstractThere is a well-known mode of rainfall variability associating opposite hydrological conditions over the Sahel region and the Gulf of Guinea, forming a dipole pattern. Previous meteorological observations show that the dipole pattern varies at interannual timescales. Using an EC-Earth climate model simulation for last millennium (850–1850 CE), we investigate the rainfall variability in West Africa over longer timescales. The 1000-year-long simulation data show that this rainfall dipole presents at decadal to multidecadal and centennial variability and long-term trend. Using the singular value decomposition (SVD) analysis, we identified that the rainfall dipole present in the first SVD mode with 60% explained variance and associated with the variabilities in tropical Atlantic sea surface temperature (SST). The second SVD mode shows a monopole rainfall variability pattern centred over the Sahel, associated with the extra-tropical Atlantic SST variability. We conclude that the rainfall dipole-like pattern is a natural variability mode originated from the local ocean–atmosphere-land coupling in the tropical Atlantic basin. The warm SST anomalies in the equatorial Atlantic Ocean favour an anomalous low pressure at the tropics. This low pressure weakens the meridional pressure gradient between the Saharan Heat Low and the tropical Atlantic. It leads to anomalous northeasterly, reduces the southwesterly moisture flux into the Sahel and confines the Gulf of Guinea's moisture convergence. The influence from extra-tropical climate variability, such as Atlantic multidecadal oscillation, tends to modify the rainfall dipole pattern to a monopole pattern from the Gulf of Guinea to Sahara through influencing the Sahara heat low. External forcing—such as orbital forcing, solar radiation, volcanic and land-use—can amplify/dampen the dipole mode through thermal forcing and atmosphere dynamical feedback.


Sign in / Sign up

Export Citation Format

Share Document