cold anomaly
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xuelin Hu ◽  
Weihua Yuan ◽  
Rucong Yu

Abstract This study investigates the rainfall characteristics during intense rainfall over Yaan against a cold-anomaly background, aiming to refine the understanding of different kinds of rainfall events across complex terrain. Hourly rain gauge records, ERA5 reanalysis data and the black body temperature of cloud tops derived from FY-2E were used. The results show that against a cold-anomaly background, the regional rainfall events (RREs) in Yaan exhibit west-to-east propagation, which is different from the north-to-south evolution of warm RREs. The middle and upper troposphere is dominated by a negative geopotential height anomaly corresponding to the cold anomaly. The cyclonic circulation at the higher level associated with the negative geopotential height anomaly bends the high-level jet to the south, forming a divergent zone over the Tibetan Plateau (TP) and guiding mid-level systems to move eastward. The cyclonic circulation at the mid-level produces a wind shear zone over the TP, generating anomalous vorticity that continuously moves eastward and develops to influence the rainfall over Yaan. The cold Yaan RREs are closely related to the TP low-pressure systems (both vortex and shearline). The anomalous vorticity over the TP can influence the local vortex over the eastern periphery of the TP at a distance mainly by the horizontal advection of anomalous vorticity by the mean flow and then enhance the local vortex mainly by anomalous convergence when it moves near Yaan.


Author(s):  
Xiaoye Yang ◽  
Gang Zeng ◽  
Shiyue Zhang ◽  
Wei‐Chyung Wang ◽  
Vedaste Iyakaremye

2021 ◽  
Vol 48 (17) ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Ian Simmonds ◽  
Lixin Wu
Keyword(s):  

Author(s):  
Liansheng Mei ◽  
Cai Liu ◽  
Zhiguo Meng ◽  
Xigang Wang ◽  
Zhanchuan Cai ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (10) ◽  
pp. 1939
Author(s):  
Tao Xian ◽  
Gaopeng Lu ◽  
Hongbo Zhang ◽  
Yongping Wang ◽  
Shaolin Xiong ◽  
...  

The thermal structure of the environmental atmosphere associated with Terrestrial Gamma-ray Flashes (TGFs) is investigated with the combined observations from several detectors (FERMI, RHESSI, and Insight-HXMT) and GNSS-RO (SAC-C, COSMIC, GRACE, TerraSAR-X, and MetOp-A). The geographic distributions of TGF-related tropopause altitude and climatology are similar. The regional TGF-related tropopause altitude in Africa and the Caribbean Sea is 0.1–0.4 km lower than the climatology, whereas that in Asia is 0.1–0.2 km higher. Most of the TGF-related tropopause altitudes are slightly higher than the climatology, while some of them have a slightly negative bias. The subtropical TGF-producing thunderstorms are warmer in the troposphere and have a colder and higher tropopause over land than the ocean. There is no significant land–ocean difference in the thermal structure for the tropical TGF-producing thunderstorms. The TGF-producing thunderstorms have a cold anomaly in the middle and upper troposphere and have stronger anomalies than the deep convection found in previous studies.


2021 ◽  
pp. 1-69
Author(s):  
Elizabeth A. Maroon ◽  
Stephen G. Yeager ◽  
Gokhan Danabasoglu ◽  
Nan Rosenbloom

AbstractThe subpolar North Atlantic (SPNA) experienced extreme cold during 2015, an event often called the “cold blob”. The evolution of this event in the Community Earth System Model version 1 Decadal Prediction Large Ensemble (CESM1-DPLE) hindcast initialized in November 2014 is compared to observations. This CESM1-DPLE hindcast failed to predict cold conditions during 2015 despite already cold SPNA initial conditions and despite having high sea surface temperature skill in the SPNA in all other years. The goal of this paper is to understand what led to this prediction failure in order to provide insight for future decadal prediction efforts. Our analysis shows that strongly positive North Atlantic Oscillation (NAO) conditions during winter and spring 2015 likely sustained the cold blob but were not simulated in any CESM1-DPLE members. We examine the rarity of the 2015 event using the CESM1-DPLE’s uninitialized counterpart, the CESM1 Large Ensemble (CESM1-LE). Results from the CESM1-LE indicate that the exceptional state of the observed NAO in the winter of 2015 is at least part of the explanation for why this event was not encompassed in the CESM1-DPLE spread. To test another possibility — that deficiencies in the initial conditions degraded the prediction — we performed additional hindcasts using the CESM1-DPLE protocol but different initial conditions. Altering the initial conditions did not improve the simulation of the 2015 cold blob, and in some cases, degraded it. Given the difficulty of predicting this event, this case could be a useful testbed for future prediction system development.


2021 ◽  
Author(s):  
Levke Caesar ◽  
Gerard McCarthy

<p>While there is increasing paleoclimatic evidence that the Atlantic Meridional Overturning Circulation (AMOC) has weakened over the last one to two hundred years (Caesar et al., 2018; Thornalley et al., 2018), this is not confirmed by climate model simulations. Instead, the new simulations from the 6th Coupled Model Intercomparison Project (CMIP6) show a slight strengthening of the multimodel mean AMOC from 1850 until about 1985 (Menary et al., 2020), attributed to anthropogenic aerosol forcing. Arguing for a recent weakening of the AMOC, some studies attribute the emergence of the North Atlantic warming hole as a sign of the reduced meridional heat transport associated with a weaker AMOC (e.g. Caesar et al., 2018), yet this cold anomaly has also been interpreted as being aerosol-forced (Booth et al., 2012) and therefore not necessarily a sign of a weakening AMOC but rather a possible driver of a strengthening of the AMOC.</p><p>Looking beyond temperature, a fresh anomaly has recently emerged in the subpolar North Atlantic (Holliday et al., 2020). While a strengthening AMOC has been linked with an increase in salinity in the subpolar gyre region (Menary et al., 2013), an AMOC weakening would, due to the salt-advection feedback, likely lead to a reduction in salinity in the North Atlantic region. To shed some light on the question of whether the cold anomaly is internally (AMOC) or externally (aerosol-forced) driven we consider the co-variability of salinity and temperature in the North Atlantic in respect of changes in surface fluxes or alternate drivers.</p><p> </p><p>References</p><p>Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T. and Bellouin, N., 2012. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393): 228–232.</p><p>Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. and Saba, V., 2018. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556(7700): 191-196.</p><p>Holliday, N.P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S.A., Larsen, K.M.H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H. and Yashayaev, I., 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 11(1): 585.</p><p>Menary, M.B., Roberts, C.D., Palmer, M.D., Halloran, P.R., Jackson, L., Wood, R.A., Müller, W.A., Matei, D. and Lee, S.-K., 2013. Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. Journal of Geophysical Research: Oceans, 118(4): 2087-2096.</p><p>Menary, M.B., Robson, J., Allan, R.P., Booth, B.B.B., Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L. and Zhang, R., 2020. Aerosol-Forced AMOC Changes in CMIP6 Historical Simulations. Geophysical Research Letters, 47(14): e2020GL088166.</p><p>Thornalley, D.J.R., Oppo, D.W., Ortega, P., Robson, J.I., Brierley, C.M., Davis, R., Hall, I.R., Moffa-Sanchez, P., Rose, N.L., Spooner, P.T., Yashayaev, I. and Keigwin, L.D., 2018. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556(7700): 227-230.</p>


2021 ◽  
Author(s):  
Shuting Yang ◽  
Tian Tian ◽  
Yiguo Wang ◽  
Torben Schmith ◽  
Steffen M. Olsen ◽  
...  

<p>The subpolar North Atlantic (SPNA) is a region experiencing substantial decadal variability, which has been linked to extreme weather impacts over continents. Recent studies have suggested that the connectivity with the SPNA may be a key to predictions in high latitudes. To understand the impact of the SPNA on predictability of North Atlantic-European sectors and the Arctic, we use two climate<strong> </strong>prediction systems, EC-Earth3-CPSAI and NorCPM1, to perform ensemble pacemaker experiments with a focus on the subpolar extreme cold anomaly event in 2015. This 2015 cold anomaly event is generally underestimated by the decadal prediction systems. In order to force the model to better represent the observed anomaly in SPNA, we apply nudging in a region of the SPNA (i.e., 51.5°W - 13.0°W, 30.4°N - 57.5°N, and from surface to 1000 m depth in the ocean). Here ocean temperature and salinity is restored to observed conditions from reanalysis in both model systems. All other aspects of the setup of this pacemaker experiment follow the protocol for the CMIP6 DCPP-A hindcasts and initialized on November 1, 2014. The restoration is applied during the hindcasts from November 2014 to December 2019. Multi-member ensembles of 10-year hindcasts are performed with 10 members for the EC-Earth3-CPSAI and 30 members for the NorCPM1.</p><p>The time evolution of ensembles of the initialized nudging hindcasts (EXP1) is compared with the initialized DCPP-A hindcast ensembles (EXP2) and the uninitialized ensembles (EXP3). The prediction skills of the three sets of experiments are also assessed. It can be seen that restoring the ocean temperature and salinity in the SPNA region to the reanalysis improves the prediction in the region quickly after the simulation starts, as expected. On the interannual to decadal time scales, the areas with improved prediction skills extend to over almost the entire North Atlantic for both models. The improved skill over Nordic Seas is particularly significant, especially for EC-Earth3-CPSAI. For NorCPM, the regions with improved skills extend to the entire Arctic. Our results suggest the possible role of the SPNA as a source of skillful predictions on interannual to decadal time scale, especially for high latitudes. The ocean pathways are the critical source of skill whereas our results imply a limited role of coupled feedbacks through the atmosphere.  </p>


2021 ◽  
Author(s):  
Marius Årthun ◽  
Robert C. J. Wills ◽  
Helen L. Johnson ◽  
Léon Chafik ◽  
Helene R. Langehaug

<p>There has recently been a large focus on identifying the mechanisms responsible for Atlantic multidecadal variability (AMV). However, decadal-scale variability embedded within the AMV has received less attention, despite being a prominent feature of observed North Atlantic sea surface temperature (SST) and important for the climate of adjacent continents. These decadal fluctuations in the North Atlantic Ocean are also a key source of skill in decadal climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations and pre-industrial control simulations, we identify a decadal mode of atmosphere-ocean variability in the North Atlantic with a dominant time scale of 13-18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air-sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This strongly suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability, and that we might expect it to become less pronounced over the next few years.</p>


Sign in / Sign up

Export Citation Format

Share Document