The interplay between seismic and aseismic slip along the Chaman fault illuminated by InSAR

Author(s):  
M. Dalaison ◽  
R. Jolivet ◽  
E. M. Rijsingen ◽  
S. Michel
Keyword(s):  
Author(s):  
Patricia Martínez-Garzón ◽  
Virginie Durand ◽  
Stephan Bentz ◽  
Grzegorz Kwiatek ◽  
Georg Dresen ◽  
...  

Abstract Various geophysical observations show that seismic and aseismic slip on a fault may occur concurrently. We analyze microseismicity recordings from a temporary near-fault seismic network and borehole strainmeter data from the eastern Marmara region in northwest Turkey to track seismic and aseismic deformation around the hypocentral region of an Mw 4.5 earthquake in 2018. A slow transient is observed that lasted about 30 days starting at the time of the Mw 4.5 event. We study about 1200 microseismic events that occurred during 417 days after the Mw 4.5 event around the mainshock fault rupture. The seismicity reveals a strong temporal clustering, including four episodic seismic sequences, each containing more than 30 events per day. Seismicity from the first two sequences displayed typical characteristics driven by aseismic slip and/or fluids, such as the activation of a broader region around the mainshock and swarm-like topology. The third and fourth sequences correspond to typical mainshock–aftershock sequences. These observations suggest that slow slip and potentially fluid diffusion along the fault plane could have controlled the seismicity during the initial 150 days following the Mw 4.5 event. In contrast, stress redistribution and breaking of remaining asperities may have caused the activity after the initial 150 days. Our observation from a newly installed combined dense seismic and borehole strainmeter network follows an earlier observation of a slow transient occurring in conjunction with enhanced local seismic moment release in the same region. This suggests a frequent interaction of seismic and aseismic slip in the Istanbul–Marmara seismic gap.


2021 ◽  
Author(s):  
Caroline Chalumeau ◽  

<p>Repeating earthquakes are earthquakes that repeatedly break a single, time-invariant fault patch. They are generally associated with aseismic slip, which is thought to load asperities, leading to repeated rupture. Repeating earthquakes are therefore useful tools to study aseismic slip and fault mechanics, with possible applications to earthquake triggering, loading rates and earthquake forecasting.</p><p>In this study, we analyze one year of aftershocks following the 16<sup>th</sup> April 2016 Mw 7.8 Pedernales earthquake in Ecuador to find repeating families, using data recorded by permanent and temporary seismological stations. In our area, seismicity during both the inter-seismic and post-seismic periods has been previously linked to aseismic slip. We calculate waveform cross-correlation coefficients (CC) on all available catalogue events, which we use to sort events into preliminary families, using a minimum CC of 0.95. These events were then stacked and used to perform template-matching on the continuous data. In total, 376 earthquakes were classified into 62 families of 4 to 15 earthquakes, including 8 from the one-year period before the mainshock. We later relocated these earthquakes using a double-difference method, which confirmed that most of them did have overlapping sources.</p><p>Repeating earthquakes seem to concentrate largely around the areas of largest afterslip release, where afterslip gradient is the highest. We also find an increase in the recurrence time of repeating events with time after the mainshock, over the first year of the postseismic period, which highlights a possible timeframe for the afterslip’s deceleration. Our results suggest that while most repeating aftershocks are linked to afterslip release, the afterslip gradient may play a bigger role in determining their location than previously thought.</p>


2015 ◽  
Vol 42 (2) ◽  
pp. 297-306 ◽  
Author(s):  
R. Jolivet ◽  
M. Simons ◽  
P. S. Agram ◽  
Z. Duputel ◽  
Z.-K. Shen

2021 ◽  
Author(s):  
Patricia Martínez-Garzón ◽  
Virginie Durand ◽  
Stephan Bentz ◽  
Taylan Turkmen ◽  
Grzegorz Kwiatek ◽  
...  

<p>Recent laboratory and field observations show that fault seismic and aseismic slip may occur concurrently. Here, we combine microseismicity recordings from a temporary near-fault seismic network (SMARTnet) and borehole strainmeter data from the eastern Marmara region in NW Turkey to track seismic and aseismic deformation around the hypocentral region of a M<sub>W</sub> 4.5 earthquake that occurred in 2018. The strainmeter data show a clear strain signal transient starting at the time of the M<sub>W</sub> 4.5 event and lasting for about 150 days. We study about 1,200 microseismic events following the mainshock within and beyond the mainshock fault rupture. The temporal distribution of the seismicity reveals a strong temporal clustering, including four semi-periodic seismic sequences each containing more than 50 events in two days. Two seismic sequences occurred during the strain transient showing different characteristics compared to two sequences occurring afterwards. Seismicity occurring during the transient displayed typical characteristics driven by aseismic slip, such as the activation of a broader region from the mainshock, and the absence of a clear mainshock in each sequence. Seismic sequences occurring after the transient correspond to typical mainshock-aftershock sequences and activated a region closer to the original M<sub>W</sub> 4.5 mainshock. We suggest post-strain transient seismicity originate from stress redistribution and breaking of remaining asperities. Our observations from a newly installed combined dense seismic and strainmeter network in the eastern Sea of Marmara region allows identifying repeated triggering of aseismic transients within an observation period of three years suggesting these may occur more often than previously thought.</p>


Sign in / Sign up

Export Citation Format

Share Document