seismic moment release
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
B. B. T. Wassing ◽  
T. Candela ◽  
S. Osinga ◽  
E. Peters ◽  
L. Buijze ◽  
...  

This paper describes and deploys a workflow to assess the evolution of seismicity associated to injection of cold fluids close to a fault. We employ a coupled numerical thermo-hydro-mechanical simulator to simulate the evolution of pressures, temperatures and stress on the fault. Adopting rate-and-state seismicity theory we assess induced seismicity rates from stressing rates at the fault. Seismicity rates are then used to derive the time-dependent frequency-magnitude distribution of seismic events. We model the seismic response of a fault in a highly fractured and a sparsely fractured carbonate reservoir. Injection of fluids into the reservoir causes cooling of the reservoir, thermal compaction and thermal stresses. The evolution of seismicity during injection is non-stationary: we observe an ongoing increase of the fault area that is critically stressed as the cooling front propagates from the injection well into the reservoir. During later stages, models show the development of an aseismic area surrounded by an expanding ring of high seismicity rates at the edge of the cooling zone. This ring can be related to the “passage” of the cooling front. We show the seismic response of the fault, in terms of the timing of elevated seismicity and seismic moment release, depends on the fracture density, as it affects the temperature decrease in the rock volume and thermo-elastic stress change on the fault. The dense fracture network results in a steeper thermal front which promotes stress arching, and leads to locally and temporarily high Coulomb stressing and seismicity rates. We derive frequency-magnitude distributions and seismic moment release for a low-stress subsurface and a tectonically active area with initially critically stressed faults. The evolution of seismicity in the low-stress environment depends on the dimensions of the fault area that is perturbed by the stress changes. The probability of larger earthquakes and the associated seismic risk are thus reduced in low-stress environments. For both stress environments, the total seismic moment release is largest for the densely spaced fracture network. Also, it occurs at an earlier stage of the injection period: the release is more gradually spread in time and space for the widely spaced fracture network.


Author(s):  
Patricia Martínez-Garzón ◽  
Virginie Durand ◽  
Stephan Bentz ◽  
Grzegorz Kwiatek ◽  
Georg Dresen ◽  
...  

Abstract Various geophysical observations show that seismic and aseismic slip on a fault may occur concurrently. We analyze microseismicity recordings from a temporary near-fault seismic network and borehole strainmeter data from the eastern Marmara region in northwest Turkey to track seismic and aseismic deformation around the hypocentral region of an Mw 4.5 earthquake in 2018. A slow transient is observed that lasted about 30 days starting at the time of the Mw 4.5 event. We study about 1200 microseismic events that occurred during 417 days after the Mw 4.5 event around the mainshock fault rupture. The seismicity reveals a strong temporal clustering, including four episodic seismic sequences, each containing more than 30 events per day. Seismicity from the first two sequences displayed typical characteristics driven by aseismic slip and/or fluids, such as the activation of a broader region around the mainshock and swarm-like topology. The third and fourth sequences correspond to typical mainshock–aftershock sequences. These observations suggest that slow slip and potentially fluid diffusion along the fault plane could have controlled the seismicity during the initial 150 days following the Mw 4.5 event. In contrast, stress redistribution and breaking of remaining asperities may have caused the activity after the initial 150 days. Our observation from a newly installed combined dense seismic and borehole strainmeter network follows an earlier observation of a slow transient occurring in conjunction with enhanced local seismic moment release in the same region. This suggests a frequent interaction of seismic and aseismic slip in the Istanbul–Marmara seismic gap.


2021 ◽  
Vol 7 (32) ◽  
pp. eabg9718
Author(s):  
Luigi Passarelli ◽  
Paul Antony Selvadurai ◽  
Eleonora Rivalta ◽  
Sigurjón Jónsson

Slow slip events (SSEs) represent a slow faulting process leading to aseismic strain release often accompanied by seismic tremor or earthquake swarms. The larger SSEs last longer and are often associated with intense and energetic tremor activity, suggesting that aseismic slip controls tremor genesis. A similar pattern has been observed for SSEs that trigger earthquake swarms, although no comparative studies exist on the source parameters of SSEs and tremor or earthquake swarms. We analyze the source scaling of SSEs and associated tremor- or swarm-like seismicity through our newly compiled dataset. We find a correlation between the aseismic and seismic moment release indicating that the shallower SSEs produce larger seismic moment release than deeper SSEs. The scaling may arise from the heterogeneous frictional and rheological properties of faults prone to SSEs and is mainly controlled by temperature. Our results indicate that similar physical phenomena govern tremor and earthquake swarms during SSEs.


2021 ◽  
Vol 14 (16) ◽  
Author(s):  
Junaid Ahmed ◽  
Farhan Javed ◽  
Waqar Ali Zafar ◽  
Talat Iqbal ◽  
Muhammad Ali Shah

2021 ◽  
Author(s):  
Sam Rivas-Dorado ◽  
Javier Ruiz ◽  
Ignacio Romeo

<p>Historical dike intrusions in the vicinity of volcanic edifices on Earth are known to produce swarms of seismic activity with cumulative seismic moments between 1·10<sup>12</sup> and 1·10<sup>20</sup> Nm, equivalent to moment magnitudes between 2 and 7. On Mars, long linear graben systems are likely to host giant dike complexes at depth, which possibly produced significant seismicity during their intrusion. Not only this, but dike intrusions are also candidates to produce crustal seismicity at present day, which may be detected during the lifespan of the InSight mission. In this work we infer the possible geometry of dikes underneath Cerberus Fossae, and make estimations of the energy released during their intrusion.</p><p>We used cross section area balancing on topographic profiles orthogonal to several of the Cerberus Fossae graben to estimate proxies for the geometry of the underlying dikes (aperture, height, depth, etc.). This technique has already been used to approximate dike properties at the nearby Elysium Fossae, with successful results. At Cerberus Fossae, the obtained dike aspect ratios are consistent with sublinear scaling, which is characteristic of fluid-induced fractures (as expected for dikes). These results support the presence of giant dikes underneath Cerberus, which may be up to 700 m thick, 140 km long, and have heights of up to 20 km.</p><p>Additionally, we used the inferred geometries and assumptions about the host rock mechanical properties to estimate various energy quantities related to dike intrusion, and compared them with the energy releases in terrestrial diking episodes. Two calculations are of special interest; M<sub>d</sub>, the energy associated to dike inflation, and M<sub>s</sub>, an approximation to the cumulative seismic moment release. The obtained M<sub>d</sub> values are between 3.1·10<sup>20</sup> and 5.0·10<sup>21</sup> Nm, and are 1 to 2 orders of magnitude larger than the equivalent moments in terrestrial events. M<sub>s</sub> was calculated from M<sub>d</sub> with two key assumptions; 1) that all aseismic energy was released by the dike, and 2) values of seismic efficiency (the percentage of seismic relative to the total energy released) based on terrestrial examples. The obtained M<sub>s</sub> are between 6.3·10<sup>19</sup> and 2.2·10<sup>21</sup> Nm, which are equivalent to moment magnitudes of 6.5 and 7.9. These are comparable to, albeit slightly larger than, the cumulative moments of some of the largest terrestrial diking events, such as the first episode in the Manda-Hararo sequence (Ethiopia, 2005, M<sub>s </sub>= 6.2) or the Miyake-jima event (Japan, 2000, M<sub>s </sub>= 6.8).</p><p>The Elysium volcanic province is thought to have been active until very recent times, and possibly even at present day. If this is the case, then intrusions in the lower size of the spectrum investigated at Cerberus, and smaller-sized events, may be detected by InSight as a series of crustal seismic events with cumulative moment magnitudes <6. Further research is needed to fully assess the validity of the comparisons between terrestrial and Martian events, and the possible energy releases of dike-induced marsquakes.</p>


2021 ◽  
Author(s):  
Qi Ou ◽  
Simon Daout ◽  
Chris Rollins ◽  
Jonathan Weiss ◽  
Barry Parsons

<p>Seismic hazard assessment for the NE Tibetan Plateau is of paramount importance because of the growing population density and the accelerated communication and trade activities along the rejuvenated Ancient Silk Road, following the Belt and Road Initiative, and the opening of the high speed railways. Previous-generation seismic hazard assessments were largely based on earthquake catalogues which are shorter than typical earthquake cycles and are temporally and spatially incomplete. This is exacerbated by the fact that magnitudes of many historical Chinese earthquakes are overestimated. In this study, we present new earthquake rate estimates for the NE Tibetan Plateau derived from both an InSAR strain rate map and a re-estimated magnitude of the 1920 Haiyuan Earthquake. First, we obtain a ~100 m resolution strain rate map from five years of Sentinel-1 InSAR data covering an area of 439254 km2 which shows strain concentrated along the Haiyuan and East Kunlun Faults and distributed across the Qilian thrusts and the West Qingling Fault. Second, the magnitude of the Haiyuan Earthquake has been re-estimated to Mw 7.9 ± 0.2 using both historical seismograms and offset measurements. Taking the total moment release rate given by the strain rate map and the magnitude of the 1920 Haiyuan Earthquake as the largest magnitude in the Gutenberg-Richter relationship, we generate rate-balancing frequency-magnitude models with different b values and percentages of seismic moment release. Comparing our models against four earthquake catalogues covering different periods and magnitude ranges suggests the following: (1) With a b value of 1 and 75% seismic moment release, the calculated relationship fits well the International Seismological Centre - Global Earthquakes Catalogue (ISC-GEM, 97 years) catalogue in the range Mw>6.5, but overestimates all other catalogues not containing the Haiyuan Earthquake; (2) keeping a b value of 1 and in order to fit the Global Centroid Moment Tensor Catalogue (GCMT, 34 years), the China Earthquake Networks Center Catalogue (CENC, 12 years) and the China Historical Strong Earthquakes Catalogue (CHSEC, 411 years), a low seismic release rate of 30% would be required; the resultant relationship also fits the ISC-GEM catalogue excluding the Haiyuan Earthquake and its aftershocks; (3) to fit all of the catalogues, it is necessary to reduce the b value to 0.7, in which case only 25% aseismic moment release would be required, giving confidence that Mw 7.9 ± 0.2 is likely the largest magnitude required to balance the tectonic strain in the NE Tibetan Plateau. This study highlights the dominating strain release by, and the effect on the b value of, the largest earthquake and demonstrates the advantage of combining tectonic strain and earthquake catalogues for seismic hazard assessment.</p>


2021 ◽  
Author(s):  
Georg Dresen ◽  
Lei Wang ◽  
Grzegorz Kwiatek ◽  
Erik Rybacki ◽  
Audrey Bonnelye ◽  
...  

<p>Fluid injection causes fault slip that is partitioned in aseismic and seismic moment release. EGS stimulation campaigns have shown that in addition to total fluid volume injected also the rates of injection and fluid pressure increase affect seismic moment release. We investigate the effect of injection rate on slip characteristics, strain partitioning and energy budget in laboratory fluid injection experiments on reservoir sandstone samples in a triaxial deformation apparatus equipped with a 16-channel acoustic emission (AE) recording system. We injected fluid in sawcut samples containing a critically stressed fault at different pressurization rates. In general, fluid-induced fault deformation is dominantly aseismic. We find slow stick-slip events are induced at high fluid pressurization rate while steady fault creep occurs in response to low fluid pressurization rate. The released total seismic moment is found to be related to total injected volume, independent of fault slip behavior. Seismic moment release rate of AE is related to measured fault slip velocity. Total potential energy change and fracture energy release rate are defined by fault stiffness and largely independent of injection rate. Breakdown power density scales with slip rate and is significantly higher for fast injection and pressurization rates. The relation between moment release and injected volume is affected by fault slip behavior, characterized by a linear relation for slip at constant rate and fault creep while a cubic relation is evident for unstable and dynamic slip. Our experimental results allow separating a stable pressure-controlled injection phase with low rate of energy dissipation from a run-away phase, where breakdown power is high and cumulative moment release with injected volume is non-linear.</p>


2021 ◽  
Author(s):  
Margarida Ramalho ◽  
Luis Matias ◽  
Marta Neres ◽  
Michele M. C. Carafa ◽  
Alexandra Carvalho ◽  
...  

<p>Probabilistic Seismic Hazard Assessment (PSHA) is the most common tool used to decide on the acceptable seismic risk and corresponding mitigation measures. One key component of these studies is the earthquake generation model comprising the definition of source zones and recurrence relationships. Slow deforming regions are particularly challenging for PSHA since the inferred return period for large earthquakes is longer than the instrumental and historical seismicity records, and the relationship between known or probable active faults and seismicity is uncertain. Therefore, in these areas PSHA results show a large variability that impairs its acceptance by the political decision-makers and the public in general. We propose two consistency tests to address the variability of earthquake generation models found in PSHA studies: i) one rule-of-thumb test where the seismic moment release from the model is converted to an average slip on a typical fault and compared with known plate kinematics or GNSS deformation field; ii) using a neotectonic model, the computed deformation is converted into seismic moment release and to a synthetic earthquake catalogue. We apply these tests to the W and SW Iberia slow deforming region, where two earthquake source areas are investigated: 1) the Lower Tagus Valley, one of the largest seismic risk zones of Portugal; and 2) the offshore SW Iberia area, considered to be the source for the 1<sup>st</sup> November 1755 event (M~8.7). Our results show that some of the earthquake source models should be regarded as suspicious, given their high/low moment release when compared to the expected values from GNSS observations or neotectonic modelling. In conclusion, PSHA studies in slow deforming regions should include a similar sanity check on their models’ evaluation, downgrading the weight of poorly compliant models.</p>


2021 ◽  
Author(s):  
Christoph Grützner ◽  
Simone Aschenbrenner ◽  
Petra Jamšek Rupnik ◽  
Klaus Reicherter ◽  
Nour Saifelislam ◽  
...  

Abstract. The Dinaric Fault System in western Slovenia, consisting of NW-SE trending, right-lateral strike-slip faults, accommodates the northward motion of Adria with respect to Eurasia. These active faults show a clear imprint in the morphology and some of them hosted moderate instrumental earthquakes. However, it is largely unknown if the faults also had strong earthquakes in the Late Quaternary. This hampers our understanding of the regional tectonics and the seismic hazard. Geological evidence of co-seismic surface ruptures only exists for one historical event, the 1511 Idrija Earthquake with a magnitude of ~M6.8, but the causative fault is still disputed. Here we use geomorphological data, near-surface geophysical surveys, and paleoseismological trenching to show that two of these faults, the Predjama Fault and the Idrija Fault ruptured in strong earthquakes in the Holocene. In a paleoseismological trench across the Predjama Fault we found at least one earthquake with a minimum magnitude of MW6.1 that occurred between 13–0.7 ka, very likely not earlier than 8.4 ka. At the Idrija Fault, a surface-rupturing earthquake with a magnitude of at least MW6.1 happened in the last ~2.1 ka. This event could correspond to the 1511 Idrija earthquake. Our results show that the faults rupture in rare, but strong earthquakes, which dominate the seismic moment release. We show that instrumental and historical seismicity data do not capture the strongest events in this area. The fact that many of the NW-SE trending, parallel faults are active implies that the deformation in western Slovenia is distributed, rather than focussed on one major structure.


2021 ◽  
Vol 118 (2) ◽  
pp. e2020943118
Author(s):  
Mara H. Reed ◽  
Carolina Munoz-Saez ◽  
Sahand Hajimirza ◽  
Sin-Mei Wu ◽  
Anna Barth ◽  
...  

Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions.


Sign in / Sign up

Export Citation Format

Share Document