scholarly journals Long‐Term Changes in Runoff Generation Mechanisms for Two Proglacial Areas in the Swiss Alps II: Subsurface Flow

2021 ◽  
Vol 57 (12) ◽  
Author(s):  
Fabian Maier ◽  
Ilja Meerveld ◽  
Markus Weiler
2021 ◽  
Author(s):  
David G. Litwin ◽  
Ciaran J. Harman ◽  
Gregory E. Tucker ◽  
Katherine R. Barnhart

<p>Geomorphic properties of watersheds influence runoff generation, which drives landscape evolution over long timescales. Despite this strong process feedback, our understanding of how runoff generation affects long-term catchment evolution remains rudimentary. In most humid landscapes, storm runoff arises from shallow subsurface flow and from precipitation on saturated areas. Catchment geomorphology drives these runoff mechanisms, as landscape relief generates hydraulic gradients from hillslopes to streams, and regolith thickness and permeability affect flow partitioning and water storage capacity. However, there are few studies of how runoff coupled to dynamic shallow groundwater affects landscape form. In this study, we present a new groundwater-landscape evolution model and introduce a nondimensional framework to explore how subsurface-mediated runoff generation affects long-term catchment evolution. The model solves hydraulic groundwater equations to predict the water table location given prescribed recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which may detach and transport sediment, affecting the landscape form that in turn affects runoff generation. We show that (1) two input parameters fully describe the possible steady state landscapes that coevolve under steady recharge, (2) subsurface flow capacity exerts a fundamental control on hillslope length and relief of these landscapes, and (3) three topographic metrics derived from the governing equations, steepness index, Laplacian curvature, and topographic wetness index, form a natural basis for evaluating the resulting coevolved landscapes. We derive a theoretical relationship using these metrics that allows us to recover the key model input parameters (including subsurface transmissivity) from topographic analysis of the landscape. These results open possibilities for topographic analysis of humid upland landscapes that could inform quantitative understanding of hydrological processes at the landscape scale.</p>


2018 ◽  
Vol 44 (2) ◽  
pp. 397 ◽  
Author(s):  
G. Zuecco ◽  
D. Penna ◽  
M. Borga

Trying to obtain a more detailed understanding of the hydrological functioning of mountain catchments represents an important challenge in the effort of counteracting possible consequences of climate and land use change on water resources availability. Long-term (> 10 years) hydro-meteorological monitoring in small (typically < 10 km2) experimental catchments constitutes a valuable tool to achieve these goal. One of these sites is the Rio Vauz Catchment (1.9 km2), in the Italian Dolomites, that represents an excellent example of long-term snowmelt-dominated catchment in Dolomitic regions. The strong elevation gradient of the Rio Vauz Catchment and the different physiographic properties of its nested subcatchments make this a unique site for investigating fundamental runoff generation mechanisms in mountain headwaters. In this work, we provide a review of physical processes that have been inferred from 12 years of hydrological monitoring in this catchment. We present the available dataset and summarize the main hydrological mechanisms that explain the internal functioning of the Rio Vauz Catchment, primarily focusing on three characterizing hydrological behaviours, namely thresholds, hysteresis and connectivity. The main control on surface and subsurface runoff threshold response is constituted by a combination of soil moisture antecedent conditions, rainfall amount and topography. Changes in hysteresis patterns (clockwise and anti-clockwise loops) between streamflow and soil moisture, water table depth and electrical conductivity were governed by distinct runoff generation processes and rainfall event characteristics. Hillslope-riparian-stream subsurface connectivity was controlled by antecedent wetness conditions and rainfall amount. The composition in environmental tracers (stable isotopes of water and electrical conductivity) in different water sources and the application of tracer-based mixing models helped to distinguish the geographical sources to runoff and to quantify the role of rainfall and snowmelt in streamflow. Finally, we define a perceptual model of runoff generation processes for dry and wet conditions that can be considered representative for many mountain headwater catchments in the world.


2016 ◽  
Vol 7 (1) ◽  
pp. 31 ◽  
Author(s):  
Jae-Won Choi ◽  
Yumi Cha ◽  
Jeoung-Yun Kim ◽  
Cheol-Hong Park

Sign in / Sign up

Export Citation Format

Share Document