Paleomagnetism of baked sedimentary rocks in the Newark and Culpeper basins: Evidence for the J1 cusp and significant Late Triassic apparent polar wander from the Mesozoic basins of North America

Tectonics ◽  
1994 ◽  
Vol 13 (4) ◽  
pp. 917-928 ◽  
Author(s):  
Kenneth P. Kodama ◽  
Maria T. Cioppa ◽  
Elizabeth Sherwood ◽  
Andrew C. Warnock
1980 ◽  
Vol 17 (9) ◽  
pp. 1210-1228 ◽  
Author(s):  
R. W. Yole ◽  
E. Irving

New paleomagnetic results from the Karmutsen Formation (Late Triassic) of Vancouver Island confirm the presence of two families of magnetizations (X and Y), both of which are inconsistent with known Mesozoic and Cenozoic geomagnetic fields of cratonic North America. The X magnetizations have coherent directions with the exception of a subset of five sites (the B subset). We argue that the deviation of the B subset is caused either by a 31 ± 13 °anticlockwise rotation of a small block relative to the main sampling areas or by a short-term excursion of the field. The X magnetization has an overall mean direction 008°, −33 °α95 = 6 °based on results from 147 oriented samples (usually 2 specimens from each) collected at 28 sites spanning about 6000 m stratigraphically. We interpret this as the original Late Triassic magnetization. The corresponding X paleopole (21°N, 44°E A95 = 6°) is strongly far-sided and right-handed with respect to the Mesozoic apparent polar wander path for cratonic North America. The paleolatitude indicated for Vancouver Island in the Late Triassic is either 18°N or 18°S, the latter being preferred on the grounds that it yields a more consistent pattern for Cordilleran magnetizations, but the ambiguity is still not settled. In either case the results show that Vancouver Island was far south of its present position relative to North America in the Late Triassic, thus confirming the previous results of Irving and Yole. The Y magnetizations, with more heterogenous properties, occur at 14 sites (66 oriented cores, usually 2 specimens each). Y magnetizations are generally softer than X and for this and other reasons we regard them as secondary and post-Triassic in age. Individual site poles for the Y magnetization are, with minor exceptions, right-handed and slightly far-sided with respect to the apparent polar wandering path for cratonic North America. The mean paleopole for Y magnetizations is situated at 70°N, 15°W A95 = 11°. Both the X and Y magnetizations are consistent with either northward motion of the westernmost Cordilleran elements accompanied by clockwise rotation, or with oblique translation from the southwest. The northward component of motion derived from X directions would be the same in both instances and amounts to 1300 or 4900 km depending on whether the northern or the southern paleolatitude option is chosen. Our preference is for the latter and we present arguments which suggest that Vancouver Island may have been originally derived from a region near to eastern Gondwana or from a block east of Gondwana that might have included Malaysia. The procedures used for the tectonic analysis of aberrant paleopoles are described in the Appendix.


2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


2009 ◽  
Vol 83 (5) ◽  
pp. 783-793 ◽  
Author(s):  
B. Senowbari-Daryan ◽  
G. D. Stanley

Stromatomorpha californica Smith is a massive, calcified, tropical to subtropical organism of the Late Triassic that produced small biostromes and contributed in building some reefs. It comes from the displaced terranes of Cordilleran North America (Eastern Klamath terrane, Alexander terrane, and Wrangellia). This shallow-water organism formed small laminar masses and sometimes patch reefs. It was first referred to the order Spongiomorphidae but was considered to be a coral. Other affinities that have been proposed include hydrozoan, stomatoporoid, sclerosponge, and chambered sponge. Part of the problem was diagenesis that resulted in dissolution of the siliceous spicules and/or replaced them with calcite. Well-preserved dendroclone spicules found during study of newly discovered specimens necessitate an assignment of Stromatomorpha californica to the demosponge order Orchocladina Rauff. Restudy of examples from the Northern Calcareous Alps extends the distribution of this species to the Tethys, where it was an important secondary framework builder in Upper Triassic (Norian-Rhaetian) reef complexes. Revisions of Stromatomorpha californica produce much wider pantropical distribution, mirroring paleogeographic patterns revealed for other tropical Triassic taxa. Review of Liassic material from the Jurassic of Morocco, previously assigned to Stromatomorpha californica Smith var. columnaris Le Maitre, cannot be sustained. Species previously included in Stromatomorpha are: S. stylifera Frech (type species, Rhaetian), S. actinostromoides Boiko (Norian), S. californica Smith (Norian), S. concescui Balters (Ladinian-Carnian), S. pamirica Boiko (Norian), S. rhaetica Kühn (Rhaetian), S. stromatoporoides Frech, and S. tenuiramosa Boiko (Norian). Stromatomorpha rhaetica Kühn described from the Rhaetian of Vorarlberg, Austria shows no major difference from S. californica. An example described as S. oncescui Balters from the Ladinian-Carnian of the Rarau Mountains, Romania, is very similar to S. californica in exhibiting similar spicule types. However, because of the greater distance between individual pillars, horizontal layers, and the older age, S. oncescui is retained as a separate species. The net-like and regular skeleton of Spongiomorpha sanpozanensis Yabe and Sugiyama, from the Upper Triassic of Sambosan (Tosa, Japan), suggests a closer alliance with Stromatomorpha, and this taxon possibly could be the same as S. californica.


The palaeomagnetic record of continental drift during the Proterozoic is reasonably complete for North America (including Greenland and the Baltic Shield), less complete for Africa and Australia, and fragmentary elsewhere. Palaeomagnetic poles of similar age from different cratons or structural provinces of any one continent tend to fall on a common apparent polar wander path (a.p.w.p.), indicating no major (> 1000 km) intercratonic movements. On this evidence, Proterozoic orogens and mobile belts are essentially ensialic in origin. However, the palaeomagnetic record has systematic gaps. In highly metamorphosed orogens (amphibolite grade and above), remagnetization dating from post-orogenic uplift and cooling is pervasive. Collisional and ensialic orogenesis cannot then be distinguished. Palaeopoles from different continents do not follow a common a.p.w.p. They record large relative rotations and palaeolatitude shifts. A recurrent pattern appears in the late Proterozoic drift of North America. At approximately 200 Ma intervals (at about 1250, 1050, 850 and 600 Ma B.P .), the continent returned to the same orientation and (equatorial) latitudes from various rotations and high-latitude excursions. Lacking detailed a.p.w.ps. from other continents, it is not possible to say if these motions represent Wilson cycles of ocean opening and closing in the Phanerozoic style, but they do require minimum drift rates of 50—60 mm/a, comparable to the most rapid present-day plate velocities.


Sign in / Sign up

Export Citation Format

Share Document