Nonlinear teleseismic tomography at Long Valley Caldera, using three-dimensional minimum travel time ray tracing

1995 ◽  
Vol 100 (B10) ◽  
pp. 20379-20390 ◽  
Author(s):  
Charles M. Weiland ◽  
Lee K. Steck ◽  
Phillip B. Dawson ◽  
Valeri A. Korneev
Geophysics ◽  
1984 ◽  
Vol 49 (6) ◽  
pp. 767-770 ◽  
Author(s):  
R. F. Stöckli

The ray‐tracing problem is considered the solution to a minimum travel time problem for media where each layer may be regarded as a transversely isotropic homogeneous solid. The wave surface‐wavefront at t = 1 s, corresponding to a wave generated at the point source, associated with each layer’s anisotropy is approximated by surfaces which are not more difficult to handle, from a computational point of view, than ellipsoidal surfaces. These approximating surfaces are those used in ray‐tracing computation; a ray being a true ray approximation is thus obtained.


1987 ◽  
Vol 77 (3) ◽  
pp. 972-986
Author(s):  
Junho Um ◽  
Clifford Thurber

Abstract A new approximate algorithm for two-point ray tracing is proposed and tested in a variety of laterally heterogeneous velocity models. An initial path estimate is perturbed using a geometric interpretation of the ray equations, and the travel time along the path is minimized in a piecewise fashion. This perturbation is iteratively performed until the travel time converges within a specified limit. Test results show that this algorithm successfully finds the correct travel time within typical observational error much faster than existing three-dimensional ray tracing programs. The method finds an accurate ray path in a fully three-dimensional form even where lateral variations in velocity are severe. Because our algorithm utilizes direct minimization of the travel time instead of solving the ray equations, a simple linear interpolation scheme can be employed to compute velocity as a function of position, providing an added computational advantage.


2005 ◽  
Author(s):  
John W. Ewert ◽  
Christopher J. Harpel ◽  
Suzanna K. Brooks

2017 ◽  
Author(s):  
Graham D.M. Andrews ◽  
◽  
Abigail E. Martens ◽  
William Krugh ◽  
Sarah R. Brown

Sign in / Sign up

Export Citation Format

Share Document