long valley caldera
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 19)

H-INDEX

49
(FIVE YEARS 2)

2021 ◽  
Vol 13 (20) ◽  
pp. 4054
Author(s):  
Fabio Pulvirenti ◽  
Francesca Silverii ◽  
Maurizio Battaglia

The Long Valley Caldera, located at the eastern edge of the Sierra Nevada range in California, has been in a state of unrest since the late 1970s. Seismic, gravity and geodetic data strongly suggest that the source of unrest is an intrusion beneath the caldera resurgent dome. However, it is not clear yet if the main contribution to the deformation comes from pulses of ascending high-pressure hydrothermal fluids or low viscosity magmatic melts. To characterize the nature of the intrusion, we developed a 3D finite element model which includes topography and crust heterogeneities. We first performed joint numerical inversions of uplift and Electronic Distance Measurement baseline length change data, collected during the period 1985–1999, to infer the deformation-source size, position, and overpressure. Successively, we used this information to refine the source overpressure estimation, compute the gravity potential and infer the intrusion density from the inversion of deformation and gravity data collected in 1982–1998. The deformation source is located beneath the resurgent dome, at a depth of 7.5 ± 0.5 km and a volume change of 0.21 ± 0.04 km3. We assumed a rhyolite compressibility of 0.026 ± 0.0011 GPa−1 (volume fraction of water between 0% and 30%) and estimated a reservoir compressibility of 0.147 ± 0.037 GPa−1. We obtained a density of 1856 ± 72 kg/m3. This density is consistent with a rhyolite melt, with 20% to 30% of dissolved hydrothermal fluids.


2021 ◽  
Vol 569 ◽  
pp. 117055
Author(s):  
F. Silverii ◽  
F. Pulvirenti ◽  
E.K. Montgomery-Brown ◽  
A.A. Borsa ◽  
W.R. Neely

2021 ◽  
Vol 7 (35) ◽  
Author(s):  
Bing Q. Li ◽  
Jonathan D. Smith ◽  
Zachary E. Ross

2021 ◽  
Author(s):  
Erica De Paolo ◽  
Elisa Trasatti ◽  
Cristiano Tolomei ◽  
Emily K. Montgomery-Brown

<p>The Long Valley Caldera, California (USA), has been restless over the past few decades, experiencing seismic swarms and ground deformation episodes. The last inflation began in late 2011, when a radially symmetric tumescence was detected coinciding with a large resurgent dome within the caldera. Since then, a continuous inflation with quasi-steady rate of ~1.5 cm/yr has been observed.<span>  </span>Earthquakes mostly occur within the caldera along the South Moat Seismic Zone, to the south of the maximum deformation area. Although the area is tectonically active, increased seismic activity has been documented during periods of renewed inflation since the onset of this tumescence in 1978. In this study, we aim to investigate the nature and dynamics of the long-term unrest at Long Valley Caldera, as well as to provide new insights into the interaction between magmatic and tectonic processes. For this purpose, we consider a variety of datasets including geodetic and seismic records over the period spanning from late 2011 to the end of 2020. A complete seismic catalog supports our study, with more than 200 M2.5-4.5 earthquakes recorded since 2011, most with epicenters located within the caldera. Measurements from a dense network of continuous GPS stations collected in the last 10 years are analyzed in combination with high resolution Interferometric Synthetic Aperture Radar (InSAR) data. For full temporal coverage, we integrate InSAR velocities obtained from the acquisition of different satellite missions. We use, in particular, data from SAR systems operating with X and C-bands such as TerraSAR-X, COSMO-SkyMed and Sentinel-1. The multi-sensor dataset (i.e., GPS and multi-mission InSAR data) compensate the limitations of each technique, with reliable mapping of the deformation pattern evolving over several years. Data analysis highlights uplift velocities with peaks of ~2 cm/yr within the caldera and beyond its southern rim. Moreover, compared to the first half of the period of analysis (2011-2014), the area affected by high deformation rates is broader in the last several years (2017-2020). Models based on the geodetic data are developed to constrain the deformation source and to better interpret the observed signals. This study is motivated as a contribution to the understanding of this long-lived caldera unrest, for a more reliable hazard assessment.</p>


2021 ◽  
Author(s):  
Rubén García-Hernández ◽  
Luca D'Auria ◽  
José Barrancos ◽  
German D. Padilla

<p>Determining the b-value of the Gutenberg-Richter law is of great importance in Seismology. However, its estimate is strongly dependent upon selecting a proper temporal and spatial scale due to the multiscale nature of the seismicity. This characteristic is especially relevant in volcanoes where dense clusters of earthquakes often overlap the background seismicity and where this parameter displays a higher spatial and temporal variability.</p><p>For this reason, we devised a novel approach called MUST-B (MUltiscale Spatial and Temporal estimation of the B-value) which allows a consistent estimate of the b-value, avoiding subjective “a priori ” choices, by considering simultaneously different temporal or spatial scales. This approach also includes a consistent estimation of the completeness magnitude (Mc) and the uncertainties over both b and Mc. We applied this method to datasets in volcanic areas proving its effectiveness to analyze complex seismicity patterns and its utility in volcanic monitoring and geothermal exploration. Besides, it may provide a way to distinguish seismicity caused by tectonic faults and volcanic sources in zones where there is a mix of both of them.</p><p>We present MUST-B applications to three volcanic areas: Long Valley caldera (USA), Tenerife and El Hierro (Canary Islands). The spatial analysis of the b-value in Long Valley shows an impressive chimney-like volume characterized by high b-values which coincide with the main pathway of geothermal fluids inferred by independent studies. For Tenerife, we applied MUST-B to analyze both spatial and temporal variations. The spatial pattern shows an interesting variation between 2004-2005 and the period 2016-2020. In both cases, high b-values appear in an area that hosted increased seismicity because of seismo-volcanic crises. These high b-values are also evidenced by the temporal analysis, which shows an increase in correspondence between these two periods. For El Hierro, we analyzed the seismicity preceding the 2011 submarine eruption of Tagoro volcano using a joint spatio-temporal analysis. Results show high b-values in the area where the vent opened and a drop of this parameter just before the beginning of the eruption.</p>


2021 ◽  
Author(s):  
Mehdi Nikkhoo ◽  
Eleonora Rivalta

<p>Gravity change observations at volcanoes provide information on the location and mass change of intruded magma bodies. Gravity change and surface displacement observations are often combined in order to infer the density of the intruded materials. Previous studies have highlighted that it is crucial to account for magma compressibility and the shape of the gravity change and deformation source to avoid large biases in the density estimate. Currently, an analytical model for the deformation field and gravity change due to a source of arbitrary shape is lacking, affecting our ability to perform rapid inversions and assess the nature of volcanic unrest.  </p><p>Here, we propose an efficient approach for rapid joint-inversions of surface displacement and gravity change observations associated with underground pressurized reservoirs. We derive analytical solutions for deformations and gravity changes due to the volume changes of triaxial point-sources in an isotropic elastic half-space. The method can be applied to  volcanic reservoirs that are deep compared to their size (far field approximation). We show that the gravity changes not only allow inferring mass changes within the reservoirs, but also help better constrain location, shape and the volume change of the source. We discuss how the inherent uncertainties in the realistic shape of volcanic reservoirs are reflected in large uncertainties on the density estimates. We apply our approach to the surface displacements and gravity changes at Long Valley caldera over the 1985-1999 time period. We show that gravity changes together with only vertical displacements are sufficient to constrain the mass change and all the other source parameters. We also show that while mass change is well constrained by gravity change observations the density estimate is more uncertain even if the magma compressibility is accounted for in the model.</p>


Author(s):  
Justin B. Peers ◽  
Michael K. Lindell ◽  
Christopher E. Gregg ◽  
Ashleigh K. Reeves ◽  
Andrew T. Joyner ◽  
...  

Author(s):  
Steve Flexser ◽  
Harold A. Wollenberg ◽  
Alan R. Smith

Sign in / Sign up

Export Citation Format

Share Document