An asymptotic three-dimensional technique to study radio wave propagation in the presence of a localized perturbation of environment

Radio Science ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 515-524 ◽  
Author(s):  
O. V. Soloviev ◽  
V. V. Agapov
Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 750 ◽  
Author(s):  
Ferdous Hossain ◽  
Tan Kim Geok ◽  
Tharek Abd Rahman ◽  
Mohammad Nour Hindia ◽  
Kaharudin Dimyati ◽  
...  

This article introduces an efficient analysis of indoor 4.5 GHz radio wave propagation by using a proposed three-dimensional (3-D) ray-tracing (RT) modeling and measurement. The attractive facilities of this frequency band have significantly increased in indoor radio wave communication systems. Radio propagation predictions by simulation method based on a site-specific model, such as RT is widely used to categorize radio wave channels. Although practical measurement provides accurate results, it still needs a considerable amount of resources. Hence, a computerized simulation tool would be a good solution to categorize the wireless channels. The simulation has been performed with an in-house developed software tool. Here, the 3-D shooting bouncing ray tracing (SBRT) and the proposed 3-D ray tracing simulation have been performed separately on a specific layout where the measurement is done. Several comparisons have been performed on the results of the measurement: the proposed method, and the existing SBRT method simulation with respect to received signal strength indication (RSSI) and path loss (PL). The comparative results demonstrate that the RSSI and the PL of proposed RT have better agreements with measurement than with those from the conventional SBRT outputs.


Sign in / Sign up

Export Citation Format

Share Document