scholarly journals Melting experiments on a synthetic olivine lamproite composition up to 8 GPa: Implication to its petrogenesis

1997 ◽  
Vol 102 (B7) ◽  
pp. 14751-14764 ◽  
Author(s):  
K. Sato
2021 ◽  
Vol 14 (2) ◽  
pp. 121
Author(s):  
André Miranda ◽  
Tiago Santos ◽  
Eric Largy ◽  
Carla Cruz

We have designed AS1411-N6, a derivative of the nucleolin (NCL)-binding aptamer AS1411, by adding six nucleotides to the 5′-end that are complementary to nucleotides at the 3′-end forcing it into a stem-loop structure. We evaluated by several biophysical techniques if AS1411-N6 can adopt one or more conformations, one of which allows NCL binding. We found a decrease of polymorphism of G-quadruplex (G4)-forming sequences comparing to AS1411 and the G4 formation in presence of K+ promotes the duplex folding. We also studied the binding properties of ligands TMPyP4, PhenDC3, PDS, 360A, and BRACO-19 in terms of stability, binding, topology maintenance of AS1411-N6, and NCL recognition. The melting experiments revealed promising stabilizer effects of PhenDC3, 360A, and TMPyP4, and the affinity calculations showed that 360A is the most prominent affinity ligand for AS1411-N6 and AS1411. The affinity determined between AS1411-N6 and NCL denoting a strong interaction and complex formation was assessed by PAGE in which the electrophoretic profile of AS1411-N6 showed bands of the dimeric form in the presence of the ligands and NCL.


1986 ◽  
Vol 108 (3) ◽  
pp. 649-653 ◽  
Author(s):  
E. M. Sparrow ◽  
G. A. Gurtcheff ◽  
T. A. Myrum

Melting experiments were performed encompassing both pure and impure substances. The pure substances included n-octadecane paraffin and n-eicosane paraffin, while the impure substances were mixtures synthesized from the pure paraffins. The experiments were carried out in a closed vertical tube whose wall was subjected to a step-change increase in temperature to initiate the melting. For each impure substance, supplementary measurements were made of two characteristic temperatures: the temperature T** at which melting of the solid phase first begins and the lowest temperature T* at which the melting can go to completion. For a pure substance, T** = T*. The time-dependent melting results for all the investigated substances, both pure and impure, were well correlated as a function of FoSte**(Gr**)1/8 alone, where the ** signifies the presence of T** in the temperature difference which appears in Ste and Gr. This correlation enables melting rates for impure substances to be determined from melting rates for pure substances. The T** values needed for the implementation of the correlation can be obtained from simple experiments, obviating the need for the complete equilibrium phase diagram.


1985 ◽  
Vol 7 (1) ◽  
pp. 22-28 ◽  
Author(s):  
H. Moers ◽  
J. G. Dillard ◽  
H. Klewe-Nebenius ◽  
G. Kirch ◽  
G. Pfennig ◽  
...  

1966 ◽  
Vol 49 (6) ◽  
pp. 103-125 ◽  
Author(s):  
Jerome Vinograd ◽  
Jacob Lebowitz'

Several types of circular DNA molecules are now known. These are classified as single-stranded rings, covalently closed duplex rings, and weakly bonded duplex rings containing an interruption in one or both strands. Single rings are exemplified by the viral DNA from ϕX174 bacteriophage. Duplex rings appear to exist in a twisted configuration in neutral salt solutions at room temperature. Examples of such molecules are the DNA's from the papova group of tumor viruses and certain intracellular forms of ϕX and λ-DNA. These DNA's have several common properties which derive from the topological requirement that the winding number in such molecules is invariant. They sediment abnormally rapidly in alkaline (denaturing) solvents because of the topological barrier to unwinding. For the same basic reason these DNA's are thermodynamically more stable than the strand separable DNA's in thermal and alkaline melting experiments. The introduction of one single strand scission has a profound effect on the properties of closed circular duplex DNA's. In neutral solutions a scission appears to generate a swivel in the complementary strand at a site in the helix opposite to the scission. The twists are then released and a slower sedimenting, weakly closed circular duplex is formed. Such circular duplexes exhibit normal melting behavior, and in alkali dissociate to form circular and linear single strands which sediment at different velocities. Weakly closed circular duplexes containing an interruption in each strand are formed by intramolecular cyclization of viral λ-DNA. A third kind of weakly closed circular duplex is formed by reannealing single strands derived from circularly permuted T2 DNA. These reconstituted duplexes again contain an interruption in each strand though not necessarily regularly spaced with respect to each other.


2011 ◽  
Vol 64 (2) ◽  
pp. 206 ◽  
Author(s):  
Hong Luo ◽  
Zhi-Ping Wang ◽  
An-Guo Zhang ◽  
Ke-Zhi Wang

2-(5-Phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (Hptip) and its RuII complex [Ru(bpy)2(Hptip)](PF6)2 (where bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and mass spectrometry. The acid–base properties of the complex were studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constants were derived. The DNA-binding properties of [Ru(bpy)2(Hptip)](PF6)2 were also investigated by means of UV-vis and emission spectroscopy, salt effects, steady-state emission quenching by [Fe(CN)6]4–, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. Density functional theoretical calculations were also carried out in order to understand the DNA binding properties.


Sign in / Sign up

Export Citation Format

Share Document