On Heat Exchange of the Antarctic Waters

Author(s):  
V. G. Kort
2012 ◽  
Vol 48 (1) ◽  
pp. 28-34 ◽  
Author(s):  
V. L. Zinchenko ◽  
V. P. Gerasimyuk

1982 ◽  
Vol 33 (1) ◽  
pp. 71 ◽  
Author(s):  
T Ikeda ◽  
P Dixon

Live E. superba were transported from Antarctic waters to a tropical laboratory where observations at the temperature of -0.5�C (0 to - 1.0�C), were made of intermoult period of specimens fed a mixture of microalgae (Dunaliella tertiolecta and Phaeodactylum tricornutum) or artificial pet fish food or starved. Mean intermoult period was 26.4-27.1 days for fed specimens and 29.6 days for starved specimens, with no relation to the size of specimens. The moult accounted for a loss of 2.63-4.35% of animal dry weight, which is equivalent to 1.1-1.8% of animal nitrogen or 1.4-2.3% of animal carbon. The contribution of moults to detritus in the Antarctic Ocean was estimated as 0.11 g C m-2 per year.


2021 ◽  
Vol 9 (1) ◽  
pp. 64
Author(s):  
Silvia Pennino ◽  
Antonio Angrisano ◽  
Vincenzo Della Corte ◽  
Giampaolo Ferraioli ◽  
Salvatore Gaglione ◽  
...  

A parametric wave spectrum resembling procedure is applied to detect the sea state parameters, namely the wave peak period and significant wave height, based on the measurement and analysis of the heave and pitch motions of a vessel in a seaway, recorded by a smartphone located onboard the ship. The measurement system makes it possible to determine the heave and pitch acceleration spectra of the reference ship in the encounter frequency domain and, subsequently, the absolute sea spectra once the ship motion transfer functions are provided. The measurements have been carried out onboard the research ship “Laura Bassi”, during the oceanographic campaign in the Antarctic Ocean carried out in January and February 2020. The resembled sea spectra are compared with the weather forecast data, provided by the global-WAM (GWAM) model, in order to validate the sea spectrum resembling procedure.


1987 ◽  
Vol 9 ◽  
pp. 85-91 ◽  
Author(s):  
T.H. Jacka ◽  
I. Allison ◽  
R. Thwaites ◽  
J.C. Wilson

A cruise to Antarctic waters from late October to mid December 1985 provided the opportunity to study characteristics of the seasonal sea ice from a time close to that of maximum extent through early spring decay. The area covered by the observations extends from the northern ice limit to the Antarctic coast between long. 50 °E and 80 E. Shipboard observations included ice extent, type and thickness, and snow depth. Ice cores were drilled at several sites, providing data on salinity and structure.The observations verify the highly dynamic and divergent nature of the Antarctic seasonal sea-ice 2one. Floe size and thickness varied greatly at all locations, although generally increasing from north to south. A high percentage of the total ice mass exhibited a frazil crystal structure, indicative of the existence of open water in the vicinity.The ground based observations are compared with observations from satellite sensors. The remote sensing data include the visual channel imagery from NOAA 6, NOAA 9, and Meteor 11. Comparisons are made with the operational ice charts produced (mainly from satellite data) by the Joint Ice Center, and with the analyses available by facsimile from Molodezhnaya.


1998 ◽  
Vol 10 (2) ◽  
pp. 161-170 ◽  
Author(s):  
H.A. Jonkers

Antarctic late Cenozoic pectinid-bearing sedimentary strata are chiefly confined to localities in the northern part of the Antarctic Peninsula, in the McMurdo Sound area, and Marine Plain, East Antarctica. Ages of these deposits range from Oligocene to Holocene. Chlamys-like scallops, which are absent from today's Southern Ocean, thrived in Antarctic waters during both glacial and interglacial episodes, but disappeared during the Late Pliocene. Their extinction is believed to result from the combined effects of increased carbonate solubility, habitat loss and limitations in food availability, associated with major cooling.


2011 ◽  
Vol 8 (3) ◽  
pp. 263 ◽  
Author(s):  
Roger Cropp ◽  
Georgina Kerr ◽  
Susan Bengtson-Nash ◽  
Darryl Hawker

Environmental contextPersistent organic pollutants (POPs) are potentially toxic chemicals capable of long distance transport and are often found far from their source. Little is known of their behaviour in Antarctica, where the marine plankton food web is driven by strong seasonal variations in solar radiation. Here the first dynamic coupled ecosystem–fugacity model to describe how POPs distribute through the Antarctic environment is presented. The model is used to identify the important processes that govern the presence of hexachlorobenzene in Antarctic plankton. AbstractPolar regions can be repositories for many persistent organic pollutants (POPs). However, comparatively little is known of the movement and behaviour of POPs in Antarctic ecosystems. These systems are characterised by strong seasonal effects of light on plankton dynamics. This work describes a mass-conserving, fugacity-based dynamic model to describe the movement of POPs in the Antarctic physical and plankton systems. The model includes dynamic corrections for changes in the population volumes and the temperature dependence of the fugacity capacities, and was developed by coupling a dynamic Nutrient–Phytoplankton–Zooplankton–Detritus (NPZD) ecosystem model to fugacity models of the chemistry and biology of the Southern Ocean. The model is applied to the movement of hexachlorobenzene, a POP found in the Antarctic environment. The model predicts that the burden of HCB in the plankton varies with the seasonal cycle in Antarctic waters, and induces a seasonal variation in the biomagnification factor of zooplankton. This suggests that time series of POP concentrations in Antarctic biotic and abiotic systems should be measured over complete seasonal cycles. Furthermore, detritus is shown to be a key contributor to the movement of POPs in polar environments, linking physical and biological components of the model.


2005 ◽  
Vol 25 (8) ◽  
pp. 1081-1101 ◽  
Author(s):  
Michiel van den Broeke ◽  
Dirk van As ◽  
Carleen Reijmer ◽  
Roderik van de Wal

Sign in / Sign up

Export Citation Format

Share Document