Heterogeneous alteration of the upper oceanic crust: Correlation of rock chemistry, magnetic properties, and O isotope ratios with alteration patterns in basalts from site 396B, DSDP

1981 ◽  
Vol 86 (B9) ◽  
pp. 7935-7950 ◽  
Author(s):  
J. K. Böhlke ◽  
J. Honnorez ◽  
B.-M. Honnorez-Guerstein ◽  
K. Muehlenbachs ◽  
N. Petersen
2017 ◽  
Vol 460 ◽  
pp. 15-24 ◽  
Author(s):  
C.V. Ullmann ◽  
R. Frei ◽  
C. Korte ◽  
C. Lüter

2021 ◽  
Author(s):  
Mathias Schannor ◽  
Heye Freymuth ◽  
Jesse Reimink ◽  
Mark Rehkämper ◽  
Helen Williams
Keyword(s):  

2019 ◽  
Vol 91 (21) ◽  
pp. 13367-13371 ◽  
Author(s):  
Robert J. Van Hale ◽  
Peter Wilfred Holder ◽  
Jacob D. S. Harrison ◽  
Russell D. Frew
Keyword(s):  

2020 ◽  
Author(s):  
Malin Andersson ◽  
Valentin Troll ◽  
Martin Whitehouse ◽  
Frances Deegan ◽  
Karin Högdahl ◽  
...  

<p>Sweden is responsible for over 90% of the iron ore production in the European Union, the bulk of which originates from the Kiruna-Malmberget region in northern Sweden, the type locality for Kiruna-type apatite-iron oxide ores. Despite thorough investigations of these long known deposits, their origin is still debated. Currently, two main formation theories are discussed: formation by orthomagmatic processes (Nyström & Henriquez 1994; Troll et al. 2019), versus hydrothermal processes (Hitzman et al. 1992; Smith et al. 2013).</p><p>Secondary ion mass spectrometry (SIMS) analysis allows gathering of more detailed information regarding intra-crystal variations, such as core to rim growth zonations, than bulk analysis do. Measurements of δ<sup>56</sup>Fe and δ<sup>18</sup>O in Kiruna-type magnetites by SIMS would therefore aid in the determination of their main formation process. However, there are conflicting studies regarding crystallographic orientation effects of δ<sup>56</sup>Fe and δ<sup>18</sup>O in magnetite, and while some authors found that the isotope ratios varied depending on how the crystal was oriented (e.g. Huberty et al. 2010), others found no such effects (e.g. Marin-Carbonne et al. 2011). This research project thus aims to further examine any effects of crystal orientation on Fe and O isotope signatures and identify a suitable magnetite reference material for SIMS analysis. To enable comparison between isotope ratios and crystal orientations, the sample orientations will therefore be determined by electron backscatter diffraction (EBSD) prior to SIMS analysis. SIMS analysis require reference material mounted next to the sample for continuous corrections during analysis. Different magnetite samples will now be tested for usage as reference materials. If a homogeneous reference material is found, future studies can utilise it for further investigations of the formation of Kiruna-type magnetite, as well as any other research concerning δ<sup>56</sup>Fe or δ<sup>18</sup>O in magnetite.</p><p>Hitzman, M.W., Oreskes, N., & Einaudi, M.T. (1992). Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research. Precambrian Metallogeny Related to Plate Tectonics, vol. 58 (1), pp. 241–287. DOI:10.1016/0301-9268(92)90121-4.</p><p>Huberty, J.M., Kita, N.T., Kozdon, R., Heck, P.R., Fournelle, J.H., Spicuzza, M.J., Xu, H., & Valley, J. W. (2010). Crystal orientation effects in 18O for magnetite and hematite by SIMS. Chemical Geology, vol. 276 (3), pp. 269–283. DOI:10.1016/j.chemgeo.2010.06.012.</p><p>Marin-Carbonne, J., Rollion-Bard, C., & Luais, B. (2011). In-situ measurements of iron isotopes by SIMS: MC-ICP-MS intercalibration and application to a magnetite crystal from the Gunflint chert. Chemical Geology, vol. 285 (1), pp. 50–61. DOI:10.1016/j.chemgeo.2011.02.019.</p><p>Nyström, J.O. & Henriquez, F. (1994). Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Economic Geology, vol. 89(4), pp. 820–839. DOI:10.2113/gsecongeo.89.4.820.</p><p>Smith, M.P., Gleeson, S.A., & Yardley, B.W.D. (2013). Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: Contrasting metal behaviour in aqueous and aqueous–carbonic brines. Geochimica et Cosmochimica Acta, vol. 102, pp. 89–112. DOI:10.1016/j.gca.2012.10.015.</p><p>Troll, V.R., Weis, F.A., Jonsson, E., Andersson, U.B., Majidi, S.A., Högdahl, K., Harris, C., Millet, M.-A., Chinnasamy, S.S., Kooijman, E., &Nilsson, K.P. (2019). Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nature Communications, vol. 10(1), pp. 1712. DOI:10.1038/s41467-019-09244-4.</p>


1983 ◽  
Vol 20 (5) ◽  
pp. 764-775 ◽  
Author(s):  
Patrick J. C. Ryall ◽  
Marie-Claude Blanchard ◽  
Franco Medioli

Investigation of a seamount 50 km west of Flores, in the Azores, has shown it to be a subsided island. This has been established by the fact that some of the cores recovered by a drill from the seamount at 450 m water depth were composed of subaerial basalt. The presence of Globoratalia truncatulinoides in some cores has dated them at less than 1.8 Ma. The basalt has been dated at 4.8 Ma. These facts give a subsidence rate faster than that of normal oceanic crust. The magnetic properties of the basalts have been measured and the results used in an attempt to calculate the anomaly of the seamount using its bathymetry. No calculated anomaly based on our models resembled the observed anomaly. The observed anomaly shows a linear trend typical of normal oceanic crust.


1981 ◽  
Vol 18 (8) ◽  
pp. 1290-1302 ◽  
Author(s):  
N. H. Gale ◽  
E. T. C. Spooner ◽  
P. J. Potts

Metalliferous sediments consisting dominantly of fine-grained iron and manganese oxides and hydroxyoxides have been widely recorded from the crests of sea-floor spreading ridges and as a basal facies of the sediment accumulations of the oceanic crust. Similar sedimentary rocks that, in Cyprus, for example, contain 10–44 wt.% Fe and 2–16 wt.% Mn, occur in association with ophiolitic rocks. These chemical precipitates are thought to have formed by oxidation of hydrothermal fluid released in submarine hot-spring areas in the discharge zones of ocean-floor geothermal systems that contained convectively circulating sea water.Lead isotope ratios of 18 samples associated with Upper Cretaceous ophiolitic rocks of the Troodos massif, Cyprus (6 samples), the Baër-Bassit area, Syria (6), and the Semail nappe in the Sultanate of Oman (6), indicate that the metalliferous sediments contain lead leached from the underlying basaltic oceanic crust during hot water – rock interaction. The amount of basaltic lead varies from comparatively little, in some samples from Syria, to essentially 100% in many of the samples from Oman. Linear mixing relationships characterized by correlation coefficients of 0.97 and 0.86 are defined on 208Pb/204Pb–206Pb/204Pb and 207Pb/204Pb–206Pb/204Pb diagrams. The mixing lines connect the less radiogenic mid-ocean ridge basalt field with the more radiogenic sea-water lead field of manganese nodules, which is also the average isotopic composition of continental crustal material. Negative covariations with Th, a trace element index of the detrital sedimentary component, and Pb/Fe, a monitor of diagenetic addition of Pb from pore waters, suggest that the main cause of the lead isotopic variation was initial adsorption of a variable ratio of leached basaltic lead to dissolved sea-water lead.The mean of 13 initial 87Sr/86Sr ratios (0.7079 ± 0.0013; 2 SD) is statistically indistinguishable from the estimated 87Sr/86Sr ratio for Late Cretaceous sea water at 0.7076 ± 0.0006 (25 values; Peterman et al.). Hence, strontium was largely derived by adsorption from sea water. However, three determinations are significantly more radiogenic than Late Cretaceous sea water. A statistically significant covariation with Rb (r = 0.78), one of the trace elements contained in the detrital, sedimentary component, suggests that the increase was caused by a variable admixture of terrigenous material.Neither lead nor strontium isotope ratios nor trace element concentrations suggest significant diagenetic modification of the isotopic compositions of the metalliferous sediments.


Sign in / Sign up

Export Citation Format

Share Document