granulite xenoliths
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 16)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 72 (3) ◽  
Author(s):  
Blanka Németh ◽  
Kálmán Török ◽  
Enikő Bali ◽  
Zoltán Zajacz ◽  
László Fodor ◽  
...  

Major and trace element composition of silicate melt inclusions (SMI) and their rock-forming minerals were studied in mafic garnet granulite xenoliths from the Bakony–Balaton Highland Volcanic Field (Western-Hungary). Primary SMIs occur in clinopyroxene and plagioclase in the plagioclase-rich domains of mafic garnet granulites and in ilmenite in the vicinity of these domains in the wall rock. Based on major and trace elements, we demonstrated that the SMIs have no connection with the xenolith-hosting alkaline basalt as they have rhyodacitic composition with a distinct REE pattern, negative Sr anomaly, and HFSE depletion. The trace element characteristics suggest that the clinopyroxene hosted SMIs are the closest representation of the original melt percolated in the lower crust. In contrast, the plagioclase and ilmenite hosted SMIs are products of interaction between the silicic melt and the wall rock garnet granulite. A further product of this interaction is the clinopyroxene–ilmenite±plagioclase symplectite. Textural observations and mass ­balance calculations reveal that the reaction between titanite and the silicate melt led to the formation of these assemblages. We propose that a tectonic mélange of metapelites and (MOR-related) metabasalts partially melted at 0.3–0.5 GPa to form a dacitic–rhyodacitic melt leaving behind a garnet-free, plagioclase+clinopyroxene+orthopyroxene+ilmenite residuum. The composition of the SMIs (both major and trace elements) is similar to those from the middle Miocene calc-alkaline magmas, widely known from the northern Pannonian Basin (Börzsöny and Visegrád Mts., Cserhát and Mátra volcanic areas and Central Slovakian VF), but the SMIs are probably the result of a later, local process. The study of these SMIs also highlights how crustal contamination changes magma compositions during asthenospheric Miocene ascent.


2021 ◽  
Vol 33 (2) ◽  
pp. 233-247
Author(s):  
Cliff S. J. Shaw

Abstract. Granulite xenoliths from the Quaternary West Eifel Volcanic Field in Germany record evidence of magmatism in the lower crust at the end of the Permian. The xenoliths sampled two distinct bodies: an older intrusion (ca. 264 Myr old) that contains clinopyroxene with flat, chondrite-normalised rare earth element (REE) profiles and a younger (ca. 253 Myr old) intrusion that crystallised middle-REE-rich clinopyroxene. The younger body is also distinguished based on the negative Sr, Zr and Ti anomalies in primitive mantle-normalised multi-element plots. REE-in-plagioclase–clinopyroxene thermometry records the magmatic temperature of the xenoliths (1100–1300 ∘C), whereas Mg-in-plagioclase and Zr-in-titanite thermometry preserve an equilibration temperature of ca. 800 ∘C. These temperatures, together with a model of the mineral assemblages predicted from the composition of one of the xenoliths, define the pressure of crystallisation as ∼1 GPa. The xenoliths also preserve a long history of reheating events whose age ranges from 220 to 6 Myr. The last of these events presumably led to breakdown of garnet; formation of symplectites of orthopyroxene, plagioclase and hercynite; and redistribution of heavy rare earth elements into clinopyroxene. The data from the West Eifel granulite xenoliths, when combined with the existing data from granulites sampled in the East Eifel, indicate that the lower crust has a long a complex history stretching from at least 1.6 Ga with intrusive events at ca. 410 and 260 Ma and reheating from the Triassic to late Miocene.


2020 ◽  
Author(s):  
Valentina Butvina ◽  
Maria Golunova ◽  
Oleg Safonov

<p>Thermobarometric data and fluid inclusions data of conditions of interaction between mafic granulite xenoliths and plagiogranites in the Lotta river area, Lapland Granulite Belt, confirm the conclusion that leucocratic garnet-bearing plagiogranites of the Lapland complex are associated with the anatexis of country khondalites during peak of metamorphism.</p><p>The formation of plagiogranitic magmas, probably, occurred at depths of about 25-30 km. As they ascended, they captured numerous xenoliths (Kozlov, Kozlova, 1998). The most remarkable of them are two-pyroxene-plagioclase granulite xenoliths (orthopyroxene ± clinopyroxene + plagioclase ± quartz + magnetite + ilmenite + pyrrhotite). The xenoliths show extensive amphibole formation, which is manifested as coronas of K-bearing pargasite-edenite amphibole and coarse-grained amphibole-quartz symplectites in contacts of pyroxenes, magnetite, ilmenite and pyrrhotite with plagioclase.</p><p>The more calcic composition of plagioclase and the lower Mg-number of pyroxenes in the amphibolized portions of xenoliths correspond to the amphibole formation via reaction: Opx + Ilm + Mt + Pl = Amph ± Qtz. Amphibole formation is locally accompanied by biotite, indicating the addition of potassium into the xenoliths.</p><p>A pressure of 6.0-6.4 kbar was estimated from the equilibrium of clinopyroxene + orthopyroxene + plagioclase + quartz in non-amphibolized portions of xenoliths. The corresponding temperatures 800-860°C are within the range of temperatures estimated for the plagiogranite crystallization (Kaulina et al., 2014) as well as peak temperatures of the M2 tectonic-thermal event in the Lapland complex (Mints et al., 2007). Amphibole-plagioclase equilibrium (Blundy, Holland, 1990) recorded the temperatures of the amphibole formation 740-780°C at a pressure of 5.0-5.5 kbar. Compositional variations of amphibole toward tremolite indicate further cooling. It was, probably, due to the interaction of an essentially aqueous fluid issued from plagiogranitic magma with xenoliths as they were captured and transported.</p><p>Indeed, xenoliths are crossed by plagiogranitic veins. Abundance of aqueous-salt (17-20 wt. % NaCl eq.) inclusions and the subordinate amount of carbon dioxide inclusions in plagiogranite minerals confirm this assumption. Thus, plagiogranites of the Lapland complex and associated fluids were formed inside the complex at P-T parameters comparable to the peak conditions of granulite metamorphism. During ascension, these granite magmas could only produce fluid effects on the country rocks including xenoliths.</p>


2020 ◽  
Author(s):  
Qin Wang ◽  
Tianlong Jin ◽  
Vladislav Shatsky

<p>Although the continental lower crust is often assumed to be dry and strong, water in nominally anhydrous minerals can significantly decrease viscosity of granulites and affect the mechanical coupling between the crust and upper mantle. Here we measured water content and fabrics of 16 granulite xenoliths from the Udachnaya and Komsomolskaya kimberlites in the central Siberian craton, which were erupted in the Late Silurian. The equilibrium pressure and temperature of the granulite samples are in the range of 0.9–1.3 GPa and 683–822 ºC. The mean water contents in clinopyroxene, garnet and plagioclase are 744±272 ppm, 100±64 ppm, 423±245 ppm, respectively, suggesting the water-rich lower crust. The bulk water contents in granulites are independent on pressure and composition, but show a negative correlation with temperature. Compared with previous studies on granulite xenoliths and terrane granulites, our granulite samples have much higher bulk water contents. The lattice-preferred orientation of clinopyroxene is characterized by activation of the dominant slip system (100)[001], whereas garnet is randomly orientated. Plagioclase developed two dominant slip systems (001)[010] and (001)[100]. Calculated seismic anisotropy indicates that the weak fabric strength of these granulite samples will result in weak seismic anisotropy of the lower crust beneath the Siberian craton. We propose that during eruption of the kimberlite pipes in the Late Silurian, the lower crust of the Siberian craton, at least beneath the kimberlite fields, had high water contents, relatively low strength, weak seismic anisotropy, and high electrical conductivity. Such status may be representative for the lower crust beneath a stable craton. The following Siberian Traps in the end of Permian was associated with the magma underplating, which probably dehydrated and strengthened the lower crust of the Siberian carton.</p>


2020 ◽  
Vol 61 (4) ◽  
Author(s):  
Anton Le Roex ◽  
Christel Tinguely ◽  
Michel Gregoire

Abstract Eclogite xenoliths, together with garnet pyroxenites and some mafic garnet granulites, found in kimberlites located along the southern margin of the Kaapvaal craton in southern Africa have been analysed by electron microprobe and mass spectrometry techniques to determine their geochemical characteristics. The majority of eclogites are bimineralic with garnet and omphacitic clinopyroxene in subequal proportions, with rutile as the main accessory phase; a few contain kyanite. Based on K2O in clinopyroxene and Na2O in garnet, the eclogites can be classified as Group II eclogites, and the majority are high-Ca in character. Garnet pyroxenites comprise garnet clinopyroxenites and garnet websterites. Major and trace element concentrations and isotope ratios of reconstituted bulk rock compositions of the eclogites and garnet pyroxenites allow constraints to be placed on depth of origin and likely protolith history. Calculated Fe–Mg exchange equilibration temperatures for the eclogites range from 815 to 1000 °C, at pressures of 1·7 ± 0·4 GPa as determined by REE partitioning, indicating that they were sampled from depths of 50–55 km; i.e. within the lower crust of the Namaqua–Natal Belt. The garnet pyroxenites show slightly lower temperatures (686–835 °C) at similar pressures of equilibration. Initial 143Nd/144Nd and 87Sr/86Sr ratios (calculated to time of kimberlite emplacement) of both lithologies overlap the field for lower crustal samples from the Namaqua–Natal Belt. Further evidence for a crustal origin is found in the similar REE patterns shown by many of the associated garnet granulite xenoliths. Garnet pyroxenites are interpreted to have a similar origin as the associated eclogites but with the mafic protolith having insufficient Na (i.e. low modal plagioclase) to allow for development of omphacitic pyroxene. Metamorphism of the mafic protoliths to these eclogites and garnet pyroxenites is inferred to have occurred during crustal shortening and thickening associated with the collision of the Namaqua–Natal Belt with the Kaapvaal craton at 1–1·2 Ga.


Sign in / Sign up

Export Citation Format

Share Document