Proton cyclotron echoes and spurs observed on Alouette II and ISIS II

Radio Science ◽  
1987 ◽  
Vol 22 (4) ◽  
pp. 671-686 ◽  
Author(s):  
R. E. Horita
Keyword(s):  
Author(s):  
A. Baratto-Roldán ◽  
M. A. Cortés-Giraldo ◽  
M. C. Jiménez-Ramos ◽  
M. C. Battaglia ◽  
J. García López ◽  
...  
Keyword(s):  

2017 ◽  
Vol 847 (1) ◽  
pp. 82
Author(s):  
L. K. Jian ◽  
H. Y. Wei ◽  
C. T. Russell ◽  
J. G. Luhmann ◽  
B. Klecker ◽  
...  

2005 ◽  
Vol 12 (3) ◽  
pp. 321-336 ◽  
Author(s):  
B. T. Tsurutani ◽  
G. S. Lakhina ◽  
J. S. Pickett ◽  
F. L. Guarnieri ◽  
N. Lin ◽  
...  

Abstract. Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs) in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field) protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant "turbulence" created by the Alfvén wave dissipation is quite complex. There are both propagating (waves) and nonpropagating (mirror mode structures and MDs) byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the "turbulence" is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse) shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs). Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in this exciting new area.


2021 ◽  
Author(s):  
Maxime Dubart ◽  
Urs Ganse ◽  
Adnane Osmane ◽  
Andreas Johlander ◽  
Markus Battarbee ◽  
...  

<p>Numerical simulations are widely used in modern space physics and are an essential tool to understand or discover new phenomena which cannot be observed using spacecraft measurements. However, numerical simulations are limited by the space grid resolution of the system and the computational costs of having a high spatial resolution. Therefore, some physics may be unresolved in part of the system due to its low spatial resolution. We have previously identified, using Vlasiator, that the proton cyclotron instability is not resolved for grid cell sizes larger than four times the inertial length in the solar wind, for waves in the downstream of the quasi-perpendicular shock in the magnetosheath of a global hybrid-Vlasov simulation. This leads to unphysically high perpendicular temperature and a dominance of the mirror mode waves. In this study, we use high-resolution simulations to measure and quantify how the proton cyclotron instability diffuses and isotropizes the velocity distribution functions. We investigate the process of pitch-angle scattering during the development of the instability and propose a method for the sub-grid modelling of the diffusion process of the instability at low resolution. This allows us to model the isotropization of the velocity distribution functions and to reduce the temperature anisotropy in the plasma while saving computational resources.</p>


2019 ◽  
Vol 1350 ◽  
pp. 012191
Author(s):  
Gen Chen ◽  
Guang Liu ◽  
Yanping Zhao ◽  
Zhen Peng ◽  
Xin Zhang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


Sign in / Sign up

Export Citation Format

Share Document