resonant scattering
Recently Published Documents


TOTAL DOCUMENTS

999
(FIVE YEARS 110)

H-INDEX

55
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Nikita Ustimenko ◽  
Danil F. Kornovan ◽  
Kseniia V. Baryshnikova ◽  
Andrey B. Evlyukhin ◽  
Mihail I. Petrov

Abstract Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response of such particles can be simulated either by full wave numerical simulations or by the widely used analytical coupled multipole method (CMM), however, an analytical solution in the framework of CMM can be obtained only in a limited number of cases. In this paper, a modification of the CMM in the framework of the Born series and its applicability for simulation of light scattering by finite nanosphere structures, maintaining both dipole and quadrupole resonances, are investigated. The Born approximation simplifies an analytical consideration of various systems and helps shed light on physical processes ongoing in that systems. Using Mie theory and Green’s functions approach, we analytically formulate the rigorous coupled dipole-quadrupole equations and their solution in the different-order Born approximations. We analyze in detail the resonant scattering by dielectric nanosphere structures such as dimer and ring to obtain the convergence conditions of the Born series and investigate how the physical characteristics such as absorption in particles, type of multipole resonance, and geometry of ensemble influence the convergence of Born series and its accuracy.


2022 ◽  
Vol 924 (2) ◽  
pp. 65
Author(s):  
Lupin Chun-Che Lin ◽  
Chin-Ping Hu ◽  
Jumpei Takata ◽  
Kwan-Lok Li ◽  
C. Y. Hui ◽  
...  

Abstract We perform both timing and spectral analyses using the archival X-ray data taken with Swift, XMM-Newton, NICER, and NuSTAR from 2016 to 2020 to study an ultraluminous pulsar, NGC 7793 P13, that showed a long period of super-Eddington accretion. We use the Rayleigh test to investigate the pulsation at different epochs, and confirm the variation of the pulse profile with finite Gaussian mixture modeling and a two-sample Kuiper test. Taking into account the periodic variation of the spin periods caused by the orbital Doppler effect, we further determine an orbital period of ∼65 days and show that no significant correlation can be detected between the orbital phase and the pulsed fraction. The pulsed spectrum of NGC 7793 P13 in the 0.5–20 keV range can be simply described using a power law with a high-energy exponential cutoff, while the broadband phase-averaged spectrum of the same energy range requires two additional components to account for the contribution of a thermal accretion disk and the Comptonization photons scattered into the hard X-rays. We find that NGC 7793 P13 stayed in the hard ultraluminous state and the pulsed spectrum was relatively soft when the source was faint at the end of 2019. Moreover, an absorption feature close to 1.3 keV is marginally detected from the pulsed spectra and it is possibly associated with a cyclotron resonant scattering feature.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
P. Reichherzer ◽  
L. Merten ◽  
J. Dörner ◽  
J. Becker Tjus ◽  
M. J. Pueschel ◽  
...  

AbstractCosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $$>5$$ > 5  kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.


2021 ◽  
Vol 923 (2) ◽  
pp. 252
Author(s):  
Kelly N. Sanderson ◽  
Moire M. K. Prescott ◽  
Lise Christensen ◽  
Johan Fynbo ◽  
Palle Møller

Abstract Recent wide-field integral-field spectroscopy has revealed the detailed properties of high-redshift Lyα nebulae, most often targeted due to the presence of an active galactic nucleus (AGN). Here, we use VLT/MUSE to resolve the morphology and kinematics of a nebula initially identified due to strong Lyα emission at z ∼ 3.2 (LABn06). Our observations reveal a two-lobed Lyα nebula, at least ∼173 pkpc in diameter, with a light-weighted centroid near a mid-infrared source (within ≈17.2 pkpc) that appears to host an obscured AGN. The Lyα emission near the AGN is also coincident in velocity with the kinematic center of the nebula, suggesting that the nebula is both morphologically and kinematically centered on the AGN. Compared to AGN-selected Lyα nebulae, the surface-brightness profile of this nebula follows a typical exponential profile at large radii (>25 pkpc), although at small radii, the profile shows an unusual dip at the location of the AGN. The kinematics and asymmetry are similar to, and the C iv and He ii upper limits are consistent with, other AGN-powered Lyα nebulae. Double-peaked and asymmetric line profiles suggest that Lyα resonant scattering may be important in this nebula. These results support the picture of the AGN being responsible for powering a Lyα nebula that is oriented roughly in the plane of the sky. Further observations will explore whether the central surface-brightness depression is indicative of either an unusual gas or dust distribution or variation in the ionizing output of the AGN over time.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2289
Author(s):  
Piero Truini ◽  
Alessio Marrani ◽  
Michael Rios ◽  
Klee Irwin

In our investigation on quantum gravity, we introduce an infinite dimensional complex Lie algebra gu that extends e9. It is defined through a symmetric Cartan matrix of a rank 12 Borcherds algebra. We turn gu into a Lie superalgebra sgu with no superpartners, in order to comply with the Pauli exclusion principle. There is a natural action of the Poincaré group on sgu, which is an automorphism in the massive sector. We introduce a mechanism for scattering that includes decays as particular resonant scattering. Finally, we complete the model by merging the local sgu into a vertex-type algebra.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Luk`yanchuk ◽  
L. M. Vasilyak ◽  
V. Ya. Pecherkin ◽  
S. P. Vetchinin ◽  
V. E. Fortov ◽  
...  

AbstractResonant scattering of electromagnetic waves is a widely studied phenomenon with a vast range of applications that span completely different fields, from astronomy or meteorology to spectroscopy and optical circuitry. Despite being subject of intensive research for many decades, new fundamental aspects are still being uncovered, in connection with emerging areas, such as metamaterials and metasurfaces or quantum and topological optics, to mention some. In this work, we demonstrate yet one more novel phenomenon arising in the scattered near field of medium sized objects comprising high refractive index materials, which allows the generation of colossal local magnetic fields. In particular, we show that GHz radiation illuminating a high refractive index ceramic sphere creates instant magnetic near-fields comparable to those in neutron stars, opening up a new paradigm for creation of giant magnetic fields on the millimeter's scale.


2021 ◽  
Vol 162 (6) ◽  
pp. 241
Author(s):  
G. Randall Gladstone ◽  
Wayne R. Pryor ◽  
Doyle T. Hall ◽  
Joshua A. Kammer ◽  
Darrell F. Strobel ◽  
...  

Abstract Since 2007 the Alice spectrograph on the New Horizons (NH) spacecraft has been used to periodically observe the Lyman-α (Lyα) emissions of the interplanetary medium (IPM), which mostly result from resonant scattering of solar Lyα emissions by interstellar hydrogen atoms passing through the solar system. Three observations of IPM Lyα along a single great circle were made during the NH cruise to Pluto, and these have been supplemented by observations along six great circles (spread over the sky at 30° intervals), acquired one month before and one day after the NH flyby of Pluto, and on a further five occasions since then, out to just over 47 au from the Sun. These data indicate a distant Lyα background of 43 ± 3 Rayleigh brightness (equivalent to 56 ± 4 nW m−2 sr−1), which is present in all directions (i.e., not only in the upstream direction, as previously reported). This result is found independently by: (1) the falloff with distance from the Sun of the IPM Lyα brightness observed by NH–Alice in several directions on the sky, and (2) the residual between the observed brightness and a model brightness accounting for the resonantly scattered solar Lyα component alone. The repeated observations show that this distant Lyα background is constant and uniform over the sky, and represents the local Galactic Lyα background. The observations show no strong correlation with the cloud structure of the local IPM. The observed brightness constrains the absorption coefficient of interstellar dust at Lyα to 0.2 ± 0.01 kpc−1.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022040
Author(s):  
M B Ryzhikov ◽  
Yu A Novikova

Abstract This report considers the possibility of reducing the scattering cross section of patch antennas when using emitters of various shapes and when using structures with non-zero surface resistance. The report presents the results of the influence of the choice of the shape of a emitter on the SCS in the region of resonant scattering frequencies. The scattering indicatrices of various emitters for the resonant scattering frequency are analyzed. Comparative analysis results of the decrease estimation for the SCS of the square path when using various forms of regions with impedance surface are presented.


2021 ◽  
Vol 822 ◽  
pp. 136656
Author(s):  
Emidio Gabrielli ◽  
Barbara Mele ◽  
Roberto Onofrio

2021 ◽  
Vol 2015 (1) ◽  
pp. 012056
Author(s):  
I. V. Iorsh ◽  
O. V. Kibis

Abstract We demonstrated theoretically that formation of the resonant scattering states in the two-dimensional (2D) electron system irradiated by a circularly polarized electromagnetic field leads to the emergence of localized magnetic moments. As a consequence, the corresponding Kondo resonances appear. For GaAs-based quantum wells and microwave fields, we estimate the Kondo temperature around 2.5 K, which can be detected in state-of-the-art measurements.


Sign in / Sign up

Export Citation Format

Share Document