Real-time processing of serial stimuli in classical conditioning of the rabbit's nictitating membrane response.

1993 ◽  
Vol 19 (3) ◽  
pp. 265-283 ◽  
Author(s):  
E. James Kehoe ◽  
Peter S. Horne ◽  
Michaela Macrae ◽  
Amanda J. Horne
Author(s):  
Daiki Matsumoto ◽  
Ryuji Hirayama ◽  
Naoto Hoshikawa ◽  
Hirotaka Nakayama ◽  
Tomoyoshi Shimobaba ◽  
...  

Author(s):  
David J. Lobina

The study of cognitive phenomena is best approached in an orderly manner. It must begin with an analysis of the function in intension at the heart of any cognitive domain (its knowledge base), then proceed to the manner in which such knowledge is put into use in real-time processing, concluding with a domain’s neural underpinnings, its development in ontogeny, etc. Such an approach to the study of cognition involves the adoption of different levels of explanation/description, as prescribed by David Marr and many others, each level requiring its own methodology and supplying its own data to be accounted for. The study of recursion in cognition is badly in need of a systematic and well-ordered approach, and this chapter lays out the blueprint to be followed in the book by focusing on a strict separation between how this notion applies in linguistic knowledge and how it manifests itself in language processing.


2020 ◽  
pp. 1-25
Author(s):  
Theres Grüter ◽  
Hannah Rohde

Abstract This study examines the use of discourse-level information to create expectations about reference in real-time processing, testing whether patterns previously observed among native speakers of English generalize to nonnative speakers. Findings from a visual-world eye-tracking experiment show that native (L1; N = 53) but not nonnative (L2; N = 52) listeners’ proactive coreference expectations are modulated by grammatical aspect in transfer-of-possession events. Results from an offline judgment task show these L2 participants did not differ from L1 speakers in their interpretation of aspect marking on transfer-of-possession predicates in English, indicating it is not lack of linguistic knowledge but utilization of this knowledge in real-time processing that distinguishes the groups. English proficiency, although varying substantially within the L2 group, did not modulate L2 listeners’ use of grammatical aspect for reference processing. These findings contribute to the broader endeavor of delineating the role of prediction in human language processing in general, and in the processing of discourse-level information among L2 users in particular.


2021 ◽  
pp. 100489
Author(s):  
Paul La Plante ◽  
P.K.G. Williams ◽  
M. Kolopanis ◽  
J.S. Dillon ◽  
A.P. Beardsley ◽  
...  

Author(s):  
Jianlai Chen ◽  
Junchao Zhang ◽  
Yanghao Jin ◽  
Hanwen Yu ◽  
Buge Liang ◽  
...  

2021 ◽  
Vol 10 (7) ◽  
pp. 489
Author(s):  
Kaihua Hou ◽  
Chengqi Cheng ◽  
Bo Chen ◽  
Chi Zhang ◽  
Liesong He ◽  
...  

As the amount of collected spatial information (2D/3D) increases, the real-time processing of these massive data is among the urgent issues that need to be dealt with. Discretizing the physical earth into a digital gridded earth and assigning an integral computable code to each grid has become an effective way to accelerate real-time processing. Researchers have proposed optimization algorithms for spatial calculations in specific scenarios. However, a complete set of algorithms for real-time processing using grid coding is still lacking. To address this issue, a carefully designed, integral grid-coding algebraic operation framework for GeoSOT-3D (a multilayer latitude and longitude grid model) is proposed. By converting traditional floating-point calculations based on latitude and longitude into binary operations, the complexity of the algorithm is greatly reduced. We then present the detailed algorithms that were designed, including basic operations, vector operations, code conversion operations, spatial operations, metric operations, topological relation operations, and set operations. To verify the feasibility and efficiency of the above algorithms, we developed an experimental platform using C++ language (including major algorithms, and more algorithms may be expanded in the future). Then, we generated random data and conducted experiments. The experimental results show that the computing framework is feasible and can significantly improve the efficiency of spatial processing. The algebraic operation framework is expected to support large geospatial data retrieval and analysis, and experience a revival, on top of parallel and distributed computing, in an era of large geospatial data.


1983 ◽  
Vol 50 (5) ◽  
pp. 1197-1219 ◽  
Author(s):  
T. W. Berger ◽  
P. C. Rinaldi ◽  
D. J. Weisz ◽  
R. F. Thompson

Extracellular single-unit recordings from neurons in the CA1 and CA3 regions of the dorsal hippocampus were monitored during classical conditioning of the rabbit nictitating membrane response. Neurons were classified as different cell types using response to fornix stimulation (i.e., antidromic or orthodromic activation) and spontaneous firing characteristics as criteria. Results showed that hippocampal pyramidal neurons exhibit learning-related neural plasticity that develops gradually over the course of classical conditioning. The learning-dependent pyramidal cell response is characterized by an increase in frequency of firing within conditioning trials and a within-trial pattern of discharge that correlates strongly with amplitude-time course of the behavioral response. In contrast, pyramidal cell activity recorded from control animals given unpaired presentations of the conditioned and unconditioned stimulus (CS and UCS) does not show enhanced discharge rates with repeated stimulation. Previous studies of hippocampal cellular electrophysiology have described what has been termed a theta-cell (19-21, 45), the activity of which correlates with slow-wave theta rhythm generated in the hippocampus. Neurons classified as theta-cells in the present study exhibit responses during conditioning that are distinctly different than pyramidal cells. theta-Cells respond during paired conditioning trials with a rhythmic bursting; the between-burst interval occurs at or near 8 Hz. In addition, two different types of theta-cells were distinguishable. One type of theta-cell increases firing frequency above pretrial levels while displaying the theta bursting pattern. The other type decreases firing frequency below pretrial rates while showing a theta-locked discharge. In addition to pyramidal and theta-neurons, several other cell types recorded in or near the pyramidal cell layer could be distinguished. One cell type was distinctive in that it could be activated with a short, invariant latency following fornix stimulation, but spontaneous action potentials of such neurons could not be collided with fornix shock-induced action potentials. These neurons exhibit a different profile of spontaneous firing characteristics than those of antidromically identified pyramidal cells. Nevertheless, neurons in this noncollidable category display the same learning-dependent response as pyramidal cells. It is suggested that the noncollidable neurons represent a subpopulation of pyramidal cells that do not project an axon via the fornix but project, instead, to other limbic cortical regions.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document