firing characteristics
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Ryota Yamamoto ◽  
Yoichiro Sugiyama ◽  
Keiko Hashimoto ◽  
Shota Kinoshita ◽  
Akiyo Takemura ◽  
...  

2021 ◽  
Vol 37 (5) ◽  
pp. 567-578
Author(s):  
Kyoung Suk Ahn ◽  
Min Hye Lee ◽  
Min Su Han

In this study, the physicochemical properties of 21 wall fragments and rooftile pieces excavated from Jeseoksa Dump-site were analyzed, and the possibility of heat exposure, such as the fire reported in the literature, was investigated by estimating the firing temperature. From the results, it was estimated that the rooftiles were composed of refined materials, and the walls were composed of materials having different particle sizes depending on the layer. Unlike ordinary rooftiles and walls, they exhibited an uneven surface with traces of bloating phenomenon in the cross section. It was estimated from the blackening of some portions that firing was not performed in a controlled state in a constant firing environment. In addition, the estimated firing temperature showed that the non-overfired rooftiles had endured a firing temperature of 900°C or less, but the over-fired samples were subjected to a temperature of 1,000°C or higher and were fired at a temperature higher than the manufacturing temperature at that time. Additionally, the rooftiles probably became defective during firing or molding at the time of production, but the non-overfired rooftiles exhibited an intact shape and showed the possibility of heat exposure due to fire. Therefore, the analytical results of this study confirm that the defective architectural components damaged by the fire, as reported in the literature, were discarded in the Jeseoksa dump-site.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chunhua Yuan ◽  
Xiangyu Li

The two-dimensional neuron model can not only reproduce abundant firing patterns, but also satisfy the research of dynamical behavior because of its nonlinear characteristics. It is the most simplified model that includes the fast and slow variables required for neuron firing. In this paper, the dynamic characteristics of two-dimensional neuron model are described by both analytical and numerical methods, and the influence of model parameters and external stimuli on dynamic characteristics is described. The firing characteristics of the Prescott model under external electrical stimulation are studied, and the influence of electrophysiological parameters on the firing characteristics is analyzed. The saddle-node bifurcation and Hopf bifurcation characteristics are studied through the distribution of equilibrium points. It is found that there are critical saddle-node bifurcation and critical Hopf bifurcation in the Prescott model. And the value range of the key parameters that cause the critical bifurcation of the model is obtained by analytical methods.


Author(s):  
Roddy M. Grieves ◽  
Selim Jedidi-Ayoub ◽  
Karyna Mishchanchuk ◽  
Anyi Liu ◽  
Sophie Renaudineau ◽  
...  

AbstractWe investigated how entorhinal grid cells encode volumetric space. On a horizontal surface, grid cells usually produce multiple, spatially focal, approximately circular firing fields that are evenly sized and spaced to form a regular, close-packed, hexagonal array. This spatial regularity has been suggested to underlie navigational computations. In three dimensions, theoretically the equivalent firing pattern would be a regular, hexagonal close packing of evenly sized spherical fields. In the present study, we report that, in rats foraging in a cubic lattice, grid cells maintained normal temporal firing characteristics and produced spatially stable firing fields. However, although most grid fields were ellipsoid, they were sparser, larger, more variably sized and irregularly arranged, even when only fields abutting the lower surface (equivalent to the floor) were considered. Thus, grid self-organization is shaped by the environment’s structure and/or movement affordances, and grids may not need to be regular to support spatial computations.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kyle P Blum ◽  
Kenneth S Campbell ◽  
Brian C Horslen ◽  
Paul Nardelli ◽  
Stephen N Housley ◽  
...  

Despite decades of research, we lack a mechanistic framework capable of predicting how movement-related signals are transformed into the diversity of muscle spindle afferent firing patterns observed experimentally, particularly in naturalistic behaviors. Here, a biophysical model demonstrates that well-known firing characteristics of mammalian muscle spindle Ia afferents – including movement history dependence, and nonlinear scaling with muscle stretch velocity – emerge from first principles of muscle contractile mechanics. Further, mechanical interactions of the muscle spindle with muscle-tendon dynamics reveal how motor commands to the muscle (alpha drive) versus muscle spindle (gamma drive) can cause highly variable and complex activity during active muscle contraction and muscle stretch that defy simple explanation. Depending on the neuromechanical conditions, the muscle spindle model output appears to ‘encode’ aspects of muscle force, yank, length, stiffness, velocity, and/or acceleration, providing an extendable, multiscale, biophysical framework for understanding and predicting proprioceptive sensory signals in health and disease.


2020 ◽  
Vol 11 ◽  
Author(s):  
Nicole A. Aponte-Santiago ◽  
J. Troy Littleton

Defining neuronal cell types and their associated biophysical and synaptic diversity has become an important goal in neuroscience as a mechanism to create comprehensive brain cell atlases in the post-genomic age. Beyond broad classification such as neurotransmitter expression, interneuron vs. pyramidal, sensory or motor, the field is still in the early stages of understanding closely related cell types. In both vertebrate and invertebrate nervous systems, one well-described distinction related to firing characteristics and synaptic release properties are tonic and phasic neuronal subtypes. In vertebrates, these classes were defined based on sustained firing responses during stimulation (tonic) vs. transient responses that rapidly adapt (phasic). In crustaceans, the distinction expanded to include synaptic release properties, with tonic motoneurons displaying sustained firing and weaker synapses that undergo short-term facilitation to maintain muscle contraction and posture. In contrast, phasic motoneurons with stronger synapses showed rapid depression and were recruited for short bursts during fast locomotion. Tonic and phasic motoneurons with similarities to those in crustaceans have been characterized in Drosophila, allowing the genetic toolkit associated with this model to be used for dissecting the unique properties and plasticity mechanisms for these neuronal subtypes. This review outlines general properties of invertebrate tonic and phasic motoneurons and highlights recent advances that characterize distinct synaptic and plasticity pathways associated with two closely related glutamatergic neuronal cell types that drive invertebrate locomotion.


Author(s):  
Nicholas Lease ◽  
Nathan J. Burnside ◽  
Geoff W. Brown ◽  
Joseph P. Lichthardt ◽  
Maria C. Campbell ◽  
...  

2020 ◽  
Vol 123 (5) ◽  
pp. 1657-1670 ◽  
Author(s):  
Theeradej Thaweerattanasinp ◽  
Derin Birch ◽  
Mingchen C. Jiang ◽  
Matthew C. Tresch ◽  
David J. Bennett ◽  
...  

We investigate the firing characteristics of bursting deep dorsal horn (DDH) neurons following chronic spinal transection. DDH neurons in the chronic stage are different from those in the acute stage as noted by their increase in excitability overall and their differing responses serotonin (5-HT) and N-methyl-d-aspartate (NMDA) receptor agonists. Also, there is a strong relationship between DDH neuron activity and ventral root output. These results support a contribution of the bursting DDH neurons to muscle spasms following chronic spinal cord injury (SCI).


Sign in / Sign up

Export Citation Format

Share Document