Inference in regression models of heavily skewed alcohol use data: A comparison of ordinary least squares, generalized linear models, and bootstrap resampling.

2007 ◽  
Vol 21 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Dan J. Neal ◽  
Jeffrey S. Simons
2010 ◽  
Vol 62 (4) ◽  
pp. 875-882 ◽  
Author(s):  
A. Dembélé ◽  
J.-L. Bertrand-Krajewski ◽  
B. Barillon

Regression models are among the most frequently used models to estimate pollutants event mean concentrations (EMC) in wet weather discharges in urban catchments. Two main questions dealing with the calibration of EMC regression models are investigated: i) the sensitivity of models to the size and the content of data sets used for their calibration, ii) the change of modelling results when models are re-calibrated when data sets grow and change with time when new experimental data are collected. Based on an experimental data set of 64 rain events monitored in a densely urbanised catchment, four TSS EMC regression models (two log-linear and two linear models) with two or three explanatory variables have been derived and analysed. Model calibration with the iterative re-weighted least squares method is less sensitive and leads to more robust results than the ordinary least squares method. Three calibration options have been investigated: two options accounting for the chronological order of the observations, one option using random samples of events from the whole available data set. Results obtained with the best performing non linear model clearly indicate that the model is highly sensitive to the size and the content of the data set used for its calibration.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 123
Author(s):  
María Jaenada ◽  
Leandro Pardo

Minimum Renyi’s pseudodistance estimators (MRPEs) enjoy good robustness properties without a significant loss of efficiency in general statistical models, and, in particular, for linear regression models (LRMs). In this line, Castilla et al. considered robust Wald-type test statistics in LRMs based on these MRPEs. In this paper, we extend the theory of MRPEs to Generalized Linear Models (GLMs) using independent and nonidentically distributed observations (INIDO). We derive asymptotic properties of the proposed estimators and analyze their influence function to asses their robustness properties. Additionally, we define robust Wald-type test statistics for testing linear hypothesis and theoretically study their asymptotic distribution, as well as their influence function. The performance of the proposed MRPEs and Wald-type test statistics are empirically examined for the Poisson Regression models through a simulation study, focusing on their robustness properties. We finally test the proposed methods in a real dataset related to the treatment of epilepsy, illustrating the superior performance of the robust MRPEs as well as Wald-type tests.


Author(s):  
Matthias Collischon ◽  
Andreas Eberl

Abstract With the broader availability of panel data, fixed effects (FE) regression models are becoming increasingly important in sociology. However, in some studies the potential pitfalls of these models may be ignored, and common critiques of FE models may not always be applicable in comparison to other methods. This article provides an overview of linear FE models and their pitfalls for applied researchers. Throughout the article, we contrast FE and classical pooled ordinary least squares (OLS) models. We argue that in most cases FE models are at least as good as pooled OLS models. Therefore, we encourage scholars to use FE models if possible. Nevertheless, the limitations of FE models should be known and considered.


1996 ◽  
Vol 4 (1) ◽  
pp. 225-242 ◽  
Author(s):  
Paul Geladi ◽  
Harald Martens

Regression and calibration play an important role in analytical chemistry. All analytical instrumentation is dependent on a calibration that uses some regression model for a set of calibration samples. The ordinary least squares (OLS) method of building a multivariate linear regression (MLR) model has strict limitations. Therefore, biased or regularised regression models have been introduced. Some selected ones are ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS or PLSR). Also, artificial neural networks (ANN) based on back-propagation can be used as regression models. In order to understand regression models more is needed than just a set of statistical parameters. A deeper understanding of the underlying chemistry and physics is always equally important. For spectral data this means that a basic understanding of spectra and their errors is useful and that spectral representation should be included in judging the usefulness of the data treatment. A “constructed” spectrometric example is introduced. It consists of real spectrometric measurements in the range 408–1176 nm for 26 calibration samples and 10 test samples. The main response variable is litmus concentration, but other constituents such as bromocresolgreen and ZnO are added as interferents and also the pH is changed. The example is introduced as a tutorial. All calculations are shown in detail in Matlab. This makes it easy for the reader to follow and understand the calculations. It also makes the calculations completely traceable. The raw data are available as a file. In Part 1, the emphasis is on pretreatment of the data and on visualisation in different stages of the calculations. Part 1 ends with principal component regression calculations. Partial least squares calculations and some ANN results are presented in Part 2.


2017 ◽  
Vol 15 (1) ◽  
pp. 126-150 ◽  
Author(s):  
Yongge Tian

Abstract Matrix mathematics provides a powerful tool set for addressing statistical problems, in particular, the theory of matrix ranks and inertias has been developed as effective methodology of simplifying various complicated matrix expressions, and establishing equalities and inequalities occurred in statistical analysis. This paper describes how to establish exact formulas for calculating ranks and inertias of covariances of predictors and estimators of parameter spaces in general linear models (GLMs), and how to use the formulas in statistical analysis of GLMs. We first derive analytical expressions of best linear unbiased predictors/best linear unbiased estimators (BLUPs/BLUEs) of all unknown parameters in the model by solving a constrained quadratic matrix-valued function optimization problem, and present some well-known results on ordinary least-squares predictors/ordinary least-squares estimators (OLSPs/OLSEs). We then establish some fundamental rank and inertia formulas for covariance matrices related to BLUPs/BLUEs and OLSPs/OLSEs, and use the formulas to characterize a variety of equalities and inequalities for covariance matrices of BLUPs/BLUEs and OLSPs/OLSEs. As applications, we use these equalities and inequalities in the comparison of the covariance matrices of BLUPs/BLUEs and OLSPs/OLSEs. The work on the formulations of BLUPs/BLUEs and OLSPs/OLSEs, and their covariance matrices under GLMs provides direct access, as a standard example, to a very simple algebraic treatment of predictors and estimators in linear regression analysis, which leads a deep insight into the linear nature of GLMs and gives an efficient way of summarizing the results.


Sign in / Sign up

Export Citation Format

Share Document