Avian song development: Methodological and conceptual issues.

Author(s):  
Lewis Petrinovich
Keyword(s):  
Ethology ◽  
2005 ◽  
Vol 111 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Andrew P. King ◽  
Meredith J. West ◽  
Michael H. Goldstein

2021 ◽  
Author(s):  
Chiara De Gregorio ◽  
Filippo Carugati ◽  
Vittoria Estienne ◽  
Daria Valente ◽  
Teresa Raimondi ◽  
...  

Abstract In animal vocal communication, the development of adult-like vocalization is fundamental to interact appropriately with conspecifics. However, the factors that guide ontogenetic changes in the acoustic features remains poorly understood. In contrast with a historical view of nonhuman primate vocal production as substantially innate, recent research suggests that inheritance and physiological modification can only explain some of the developmental changes in call structure during growth. A particular case of acoustic communication is the indris' singing behavior, a peculiar case among Strepsirrhine primates. Thanks to a decade of intense data collection, this work provides the first long-term quantitative analysis on song development in a singing primate. To understand the ontogeny of such a complex vocal output, we investigated juvenile and sub-adult indris' vocal behaviour, and we found that young individuals started participating in the chorus years earlier than previously reported. Our results indicated that spectro-temporal song parameters underwent essential changes during growth. In particular, the age and sex of the emitter influenced the indris' vocal activity. We found that frequency parameters showed consistent changes across the sexes, but the temporal features showed different developmental trajectories for males and females. Given the low level of morphological sexual dimorphism and the marked differences in vocal behavior, we hypothesize that factors like social influences and auditory feedback may affect songs' features, resulting in high vocal flexibility in juvenile indris. This trait may be pivotal in a species that engages in choruses with rapid vocal turn-taking.


2021 ◽  
Vol 176 ◽  
pp. 77-86
Author(s):  
Ian P. Thomas ◽  
Stéphanie M. Doucet ◽  
D. Ryan Norris ◽  
Amy E.M. Newman ◽  
Heather Williams ◽  
...  

2004 ◽  
Vol 1016 (1) ◽  
pp. 364-376 ◽  
Author(s):  
S DERÉGNAUCOURT ◽  
P P MITRA ◽  
O FEHÉR ◽  
K K MAUL ◽  
T J LINTS ◽  
...  

2008 ◽  
Vol 99 (1) ◽  
pp. 373-385 ◽  
Author(s):  
Robin C. Ashmore ◽  
Mark Bourjaily ◽  
Marc F. Schmidt

Precise coordination across hemispheres is a critical feature of many complex motor circuits. In the avian song system the robust nucleus of the arcopallium (RA) plays a key role in such coordination. It is simultaneously the major output structure for the descending vocal motor pathway, and it also sends inputs to structures in the brain stem and thalamus that project bilaterally back to the forebrain. Because all birds lack a corpus callosum and the anterior commissure does not interconnect any of the song control nuclei directly, these bottom-up connections form the only pathway that can coordinate activity across hemispheres. In this study, we show that unilateral lesions of RA in adult male zebra finches ( Taeniopigia guttata) completely and permanently disrupt the bird's stereotyped song. In contrast, lesions of RA in juvenile birds do not prevent the acquisition of normal song as adults. These results highlight the importance of hemispheric interdependence once the circuit is established but show that one hemisphere is sufficient for complex vocal behavior if this interdependence is prevented during a critical period of development. The ability of birds to sing with a single RA provides the opportunity to test the effect of targeted microlesions in RA without confound of functional compensation from the contralateral RA. We show that microlesions cause significant changes in song temporal structure and implicate RA as playing a major part in the generation of song temporal patterns. These findings implicate a dual role for RA, first as part of the program generator for song and second as part of the circuit that mediates interhemispheric coordination.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zachary Daniel Burkett ◽  
Nancy F Day ◽  
Todd Haswell Kimball ◽  
Caitlin M Aamodt ◽  
Jonathan B Heston ◽  
...  

Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans.


Sign in / Sign up

Export Citation Format

Share Document