vocal communication
Recently Published Documents


TOTAL DOCUMENTS

624
(FIVE YEARS 156)

H-INDEX

50
(FIVE YEARS 4)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Sarah E Westrick ◽  
Mara Laslo ◽  
Eva Fischer

The Puerto Rican coquí frog Eleutherodactylus coqui (E. coqui) is both a cultural icon and a species with an unusual natural history that has attracted attention from researchers in a number of different fields within biology. Unlike most frogs, the coquí frog skips the tadpole stage, which makes it of interest to developmental biologists. The frog is best known in Puerto Rico for its notoriously loud mating call, which has allowed researchers to study aspects of social behavior such as vocal communication and courtship, while the ability of coquí to colonize new habitats has been used to explore the biology of invasive species. This article reviews research on the natural history of E. coqui and opportunities for future research.


2022 ◽  
Vol 15 ◽  
Author(s):  
Megan R. Warren ◽  
Drayson Campbell ◽  
Amélie M. Borie ◽  
Charles L. Ford ◽  
Ammar M. Dharani ◽  
...  

Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8–16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12–16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.


BMC Zoology ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Xuanmin Kong ◽  
Dan Liu ◽  
Atul Kathait ◽  
Yonglu Cui ◽  
Qi Wang ◽  
...  

Abstract Background The Amur tiger (Panthera tigris altaica) is the largest and one of the most endangered cats in the world. In wild and captive cats, communication is mainly dependent on olfaction. However, vocal communication also plays a key role between mother and cubs during the breeding period. How cubs express their physiological and psychological needs to their mother and companions by using acoustic signals is little known and mainly hindered by the difficult process of data collection. Here, we quantitatively summarized the vocal repertoire and behavioral contexts of captive Amur tiger cubs. The aim of the present work was to investigate the behavioral motivations of cub calls by considering influential factors of age, sex, and rearing experiences. Results The 5335 high-quality calls from 65 tiger cubs were classified into nine call types (Ar-1, Ar-2, Er, eee, Chuff, Growl, Hiss, Haer, and Roar) produced in seven behavioral contexts. Except for Er, eight of the nine call types were context-specific, related to Play (Ar-2, eee, and Roar), Isolation (Ar-1), Offensive Context (Haer, Growl, and Hiss), and a friendly context (Chuff). Conclusions The results suggest that cubs are not quiet, but instead they express rich information by emitting various call types, which are probably crucial for survival in the wild. We herein provide the first detailed spectrogram classification to indicate vocal repertoires of calls and their coding with respect to behavioral contexts in Amur tiger cubs, and we pave the steps for revealing their social communication system, which can be applied for conservation of populations. These insights can help tiger managers or keepers to improve the rearing conditions by understanding the feline cubs’ inner status and needs by monitoring their vocal information expressions and exchanges.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tim Sainburg ◽  
Timothy Q. Gentner

Recently developed methods in computational neuroethology have enabled increasingly detailed and comprehensive quantification of animal movements and behavioral kinematics. Vocal communication behavior is well poised for application of similar large-scale quantification methods in the service of physiological and ethological studies. This review describes emerging techniques that can be applied to acoustic and vocal communication signals with the goal of enabling study beyond a small number of model species. We review a range of modern computational methods for bioacoustics, signal processing, and brain-behavior mapping. Along with a discussion of recent advances and techniques, we include challenges and broader goals in establishing a framework for the computational neuroethology of vocal communication.


2021 ◽  
Author(s):  
Daniel Y Takahashi ◽  
Ahmed El Hady ◽  
Yisi S Zhang ◽  
Diana A Liao ◽  
Gabriel Montaldo ◽  
...  

During social interactions, individuals influence each other to coordinate their actions. Vocal communication is an exceptionally efficient way to exert such influence. Where and how social interactions are dynamically modulated in the brain is unknown. We used functional ultrasound imaging in marmoset monkeys, a highly vocal species, to investigate the dynamics of medial social brain areas in vocal perception, production, and audio-vocal interaction. We found that the activity of a distributed network of subcortical and cortical regions distinguishes calls associated with different social contexts. This same brain network showed different dynamics during externally and internally driven vocalizations. These findings suggest the existence of a social-vocal brain network in medial cortical and subcortical areas that is fundamental in social communication.


2021 ◽  
Vol 11 (12) ◽  
pp. 1592
Author(s):  
Devin Inabinet ◽  
Jan De La Cruz ◽  
Justin Cha ◽  
Kevin Ng ◽  
Gabriella Musacchia

The perception of harmonic complexes provides important information for musical and vocal communication. Numerous studies have shown that musical training and expertise are associated with better processing of harmonic complexes, however, it is unclear whether the perceptual improvement associated with musical training is universal to different pitch models. The current study addresses this issue by measuring discrimination thresholds of musicians (n = 20) and non-musicians (n = 18) to diotic (same sound to both ears) and dichotic (different sounds to each ear) sounds of four stimulus types: (1) pure sinusoidal tones, PT; (2) four-harmonic complex tones, CT; (3) iterated rippled noise, IRN; and (4) interaurally correlated broadband noise, called the “Huggins” or “dichotic” pitch, DP. Frequency difference limens (DLF) for each stimulus type were obtained via a three-alternative-forced-choice adaptive task requiring selection of the interval with the highest pitch, yielding the smallest perceptible fundamental frequency (F0) distance (in Hz) between two sounds. Music skill was measured by an online test of musical pitch, melody and timing maintained by the International Laboratory for Brain Music and Sound Research. Musicianship, length of music experience and self-evaluation of musical skill were assessed by questionnaire. Results showed musicians had smaller DLFs in all four conditions with the largest group difference in the dichotic condition. DLF thresholds were related to both subjective and objective musical ability. In addition, subjective self-report of musical ability was shown to be a significant variable in group classification. Taken together, the results suggest that music-related plasticity benefits multiple mechanisms of pitch encoding and that self-evaluation of musicality can be reliably associated with objective measures of perception.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260284
Author(s):  
Evelyn Fuchs ◽  
Veronika C. Beeck ◽  
Anton Baotic ◽  
Angela S. Stoeger

Most studies on elephant vocal communication have focused on the low-frequency rumble, with less effort on other vocalization types such as the most characteristic elephant call, the trumpet. Yet, a better and more complete understanding of the elephant vocal system requires investigating other vocalization types and their functioning in more detail as well. We recorded adult female Asian elephants (Elephas maximus) at a private facility in Nepal and analyzed 206 trumpets from six individuals regarding their frequency, temporal and contour shape, and related acoustic parameters of the fundamental frequency. We also tested for information content regarding individuality and context. Finally, we recorded the occurrence of non-linear phenomena such as bifurcation, biphonation, subharmonics and deterministic chaos. We documented a mean fundamental frequency ± SD of 474 ± 70 Hz and a mean duration ± SD of 1.38 ± 1.46 s (Nindiv. = 6, Ncalls = 206). Our study reveals that the contour of the fundamental frequency of trumpets encodes information about individuality, but we found no evidence for trumpet subtypes in greeting versus disturbance contexts. Non-linear phenomena prevailed and varied in abundance among individuals, suggesting that irregularities in trumpets might enhance the potential for individual recognition. We propose that trumpets in adult female Asian elephants serve to convey an individual’s identity as well as to signal arousal and excitement to conspecifics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewa Węgrzyn ◽  
Wiktor Węgrzyn ◽  
Konrad Leniowski

AbstractVocal communication of woodpeckers has been relatively little studied so far, mostly because majority of species use drumming to communicate. Our recent study on the Middle Spotted Woodpecker revealed that a call which is specific for floaters is individually distinctive and functions as a vocal signature of unpaired individuals. The aim of the current study is to investigate whether a contact call of paired territory owners of the same species enables discrimination of individuals and their sex. Acoustic analyses revealed that the call is individually distinctive and experimental approach confirmed that woodpeckers are able to distinguish between a contact call of their partner and a stranger. We also found that the contact call shows significant sex differences. Interestingly, the acoustic parameter enabling sex identification is different than the parameters coding individual variability of the call. The design of a call so that its first part would code the identity of an individual and the second part would code its sex presents an effective and fine-tuned communication system. The results of our study also suggest that the contact call of paired Middle Spotted Woodpeckers may be useful for conservation biologists as a tool supporting other census methods.


Author(s):  
H. Carl Gerhardt ◽  
Mitch A. Tucker ◽  
Arndt von Twickel ◽  
Wolfgang Walkowiak

Significant variation in genome size occurs among anuran amphibians and can affect cell size and number. In the gray treefrog complex in North America increases in cell size in autotriploids of the diploid (Hyla chrysoscelis) altered the temporal structure of mate-attracting vocalizations and auditory selectivity for these properties. Here we show that the tetraploid species (Hyla versicolor) also has significantly fewer brain neurons than H. chrysoscelis. With regard to cell size in tissues involved in vocal communication, spinal motor neurons were larger in tetraploids than in diploids and comparable to differences in erythrocyte size; smaller increases were found in one of the three auditory centers in the torus semicircularis. Future studies should address questions about how environmental conditions during development affect cell numbers and size and the causal relationships between these cellular changes and the vocal communication system.


Sign in / Sign up

Export Citation Format

Share Document