Gene signatures enhance breast cancer risk estimates

2008 ◽  
Author(s):  
Edward R. Winstead
2005 ◽  
Vol 12 (4) ◽  
pp. 1071-1082 ◽  
Author(s):  
R Kaaks ◽  
S Rinaldi ◽  
T J Key ◽  
F Berrino ◽  
P H M Peeters ◽  
...  

Considerable experimental and epidemiological evidence suggests that elevated endogenous sex steroids — notably androgens and oestrogens — promote breast tumour development. In spite of this evidence, postmenopausal androgen replacement therapy with dehydroepiandrosterone (DHEA) or testosterone has been advocated for the prevention of osteoporosis and improved sexual well-being. We have conducted a case–control study nested within the European Prospective Investigation into Cancer and Nutrition. Levels of DHEA sulphate (DHEAS), (Δ4-androstenedione), testosterone, oestrone, oestradiol and sex-hormone binding globulin (SHBG) were measured in prediagnostic serum samples of 677 postmenopausal women who subsequently developed breast cancer and 1309 matched control subjects. Levels of free testosterone and free oestradiol were calculated from absolute concentrations of testosterone, oestradiol and SHBG. Logistic regression models were used to estimate relative risks of breast cancer by quintiles of hormone concentrations. For all sex steroids –the androgens as well as the oestrogens – elevated serum levels were positively associated with breast cancer risk, while SHBG levels were inversely related to risk. For the androgens, relative risk estimates (95% confidence intervals) between the top and bottom quintiles of the exposure distribution were: DHEAS 1.69 (1.23–2.33), androstenedione 1.94 (1.40–2.69), testosterone 1.85 (1.33–2.57) and free testosterone 2.50 (1.76–3.55). For the oestrogens, relative risk estimates were: oestrone 2.07 (1.42–3.02), oestradiol 2.28 (1.61–3.23) and free oestradiol (odds ratios 2.13 (1.52–2.98)). Adjustments for body mass index or other potential confounding factors did not substantially alter any of these relative risk estimates. Our results have shown that, among postmenopausal women, not only elevated serum oestrogens but also serum androgens are associated with increased breast cancer risk. Since DHEAS and androstenedione are largely of adrenal origin in postmenopausal women, our results indicated that elevated adrenal androgen synthesis is a risk factor for breast cancer. The results from this study caution against the use of DHEA(S), or other androgens, for postmenopausal androgen replacement therapy.


2016 ◽  
Author(s):  
Jenna Lilyquist ◽  
Peter Kraft ◽  
Steven N. Hart ◽  
Emily J. Hallberg ◽  
Chunling Hu ◽  
...  

2011 ◽  
Vol 83 (1) ◽  
pp. 92-98 ◽  
Author(s):  
Sandra M. Brown ◽  
Julie O. Culver ◽  
Kathryn E. Osann ◽  
Deborah J. MacDonald ◽  
Sharon Sand ◽  
...  

2018 ◽  
Vol 118 (12) ◽  
pp. 1648-1657 ◽  
Author(s):  
David P. French ◽  
Jake Southworth ◽  
Anthony Howell ◽  
Michelle Harvie ◽  
Paula Stavrinos ◽  
...  

Impact ◽  
2020 ◽  
Vol 2020 (7) ◽  
pp. 12-15
Author(s):  
Peter Devilee ◽  
Marjanka Schmidt

"Breast cancer affects more than 360,000 women per year in the EU and causes more than 90,000 deaths. Identification of women at high risk of the disease can lead to early detection or disease prevention through intensive screening, therapeutic and/or lifestyle preventive measures, or prophylactic surgery. Breast cancer risk is determined by a combination of genetic and lifestyle risk factors. The advent of next generation sequencing has opened the opportunity for testing in many disease genes, and diagnostic gene panel testing is being introduced in many EU countries. However, the cancer risks associated with most variants in most genes are unknown. This leads to a major problem in appropriate counselling and management of women undergoing panel testing. The BRIDGES and B-CAST projects are jointly building a knowledge base that will allow identification of women at high-risk of specific subtypes of breast cancer, through comprehensive evaluation of DNA variants in known and suspected breast cancer genes. The effort exploits the huge resources established through the Breast Cancer Association Consortium (BCAC) and ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles). Existing datasets will be expanded by sequencing all known breast cancer susceptibility genes in >100,000 breast cancer cases and controls from population-based studies. Risk factor and tumour genome data have been collected for 10,000 cases. Jointly, the data will allow us to generate a comprehensive risk model with unprecedented discriminative power, that can provide personalised risk estimates. We will develop online tools to aid the interpretation of gene variants and provide risk estimates in a user-friendly format, to help genetic counsellors and patients worldwide to make informed clinical decisions for risk management. We will evaluate the acceptability and utility of comprehensive gene panel testing in the clinical genetics context."


Sign in / Sign up

Export Citation Format

Share Document