The task-switching pigeon - Evidence for associative learning in a task switching paradigm

2013 ◽  
Author(s):  
Christina Meier ◽  
Stephen E. G. Lea ◽  
Charlotte L. Forrest ◽  
Ian O. L. McLaren
2013 ◽  
Author(s):  
Christina Meier ◽  
Stephen E. G. Lea ◽  
Ian P. L. McLaren

2018 ◽  
Vol 72 (2) ◽  
pp. 98-117 ◽  
Author(s):  
IPL McLaren ◽  
Amy McAndrew ◽  
Katharina Angerer ◽  
Rossy McLaren ◽  
Charlotte Forrest ◽  
...  

This article argues that the dual-process position can be a useful first approximation when studying human mental life, but it cannot be the whole truth. Instead, we argue that cognition is built on association, in that associative processes provide the fundamental building blocks that enable propositional thought. One consequence of this position is to suggest that humans are able to learn associatively in a similar fashion to a rat or a pigeon, but another is that we must typically suppress the expression of basic associative learning in favour of rule-based computation. This stance conceptualises us as capable of symbolic computation but acknowledges that, given certain circumstances, we will learn associatively and, more importantly, be seen to do so. We present three types of evidence that support this position: The first is data on human Pavlovian conditioning that directly support this view. The second is data taken from task-switching experiments that provide convergent evidence for at least two modes of processing, one of which is automatic and carried out “in the background.” And the last suggests that when the output of propositional processes is uncertain, the influence of associative processes on behaviour can manifest.


2017 ◽  
Vol 8 ◽  
Author(s):  
Xiangqian Li ◽  
Bingxin Li ◽  
Martin Lages ◽  
Gijsbert Stoet

2016 ◽  
Vol 42 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Christina Meier ◽  
Stephen E. G. Lea ◽  
Ian P. L. McLaren

2018 ◽  
Vol 32 (3) ◽  
pp. 106-130 ◽  
Author(s):  
Zsófia Anna Gaál ◽  
István Czigler

Abstract. We used task-switching (TS) paradigms to study how cognitive training can compensate age-related cognitive decline. Thirty-nine young (age span: 18–25 years) and 40 older (age span: 60–75 years) women were assigned to training and control groups. The training group received 8 one-hour long cognitive training sessions in which the difficulty level of TS was individually adjusted. The other half of the sample did not receive any intervention. The reference task was an informatively cued TS paradigm with nogo stimuli. Performance was measured on reference, near-transfer, and far-transfer tasks by behavioral indicators and event-related potentials (ERPs) before training, 1 month after pretraining, and in case of older adults, 1 year later. The results showed that young adults had better pretraining performance. The reference task was too difficult for older adults to form appropriate representations as indicated by the behavioral data and the lack of P3b components. But after training older adults reached the level of performance of young participants, and accordingly, P3b emerged after both the cue and the target. Training gain was observed also in near-transfer tasks, and partly in far-transfer tasks; working memory and executive functions did not improve, but we found improvement in alerting and orienting networks, and in the execution of variants of TS paradigms. Behavioral and ERP changes remained preserved even after 1 year. These findings suggest that with an appropriate training procedure older adults can reach the level of performance seen in young adults and these changes persist for a long period. The training also affects the unpracticed tasks, but the transfer depends on the extent of task similarities.


Author(s):  
Tom Beckers ◽  
Uschi Van den Broeck ◽  
Marij Renne ◽  
Stefaan Vandorpe ◽  
Jan De Houwer ◽  
...  

Abstract. In a contingency learning task, 4-year-old and 8-year-old children had to predict the outcome displayed on the back of a card on the basis of cues presented on the front. The task was embedded in either a causal or a merely predictive scenario. Within this task, either a forward blocking or a backward blocking procedure was implemented. Blocking occurred in the causal but not in the predictive scenario. Moreover, blocking was affected by the scenario to the same extent in both age groups. The pattern of results was similar for forward and backward blocking. These results suggest that even young children are sensitive to the causal structure of a contingency learning task and that the occurrence of blocking in such a task defies an explanation in terms of associative learning theory.


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Author(s):  
Nachshon Meiran ◽  
Ziv Chorev

Abstract. Participants switched between two randomly ordered discrimination tasks and each trial began with the presentation of a task cue instructing which task to execute. The authors induced phasic alertness by presenting a salient uninformative stimulus after the task cue was provided, and at variable intervals before the target stimulus was presented (Experiments 1-3) or before the task cue (Experiment 4). When the alerting stimulus preceded the target stimulus or the task cue by an optimal interval, RT was faster, indicating an alert state and the task-switching cost was reduced. These results support the suggestion of De Jong (Acta Psychologica, 1999 ) that alertness improves the overcoming of retrieval competition through improved goal representation, but also show that the effect is specific to the residual task-switching cost.


Sign in / Sign up

Export Citation Format

Share Document