Effect of Agents Simulating the Abnormalities of the Glucose-6-Phosphate Dehydrogenase-Deficient Red Cell on Plasmodium berghei Malaria

Nature ◽  
1966 ◽  
Vol 210 (5031) ◽  
pp. 33-35 ◽  
Author(s):  
SIMEON POLLACK ◽  
JAMES N. GEORGE ◽  
WILLIAM H. CROSBY
2020 ◽  
pp. 5463-5472
Author(s):  
Alberto Zanella ◽  
Paola Bianchi

Numerous enzymes, including those of the hexose monophosphate and glycolytic pathways, are active in the red cell. They are required for the generation of ATP and the reductants NADH and NADPH. 2,3-Diphosphoglycerate, an intermediate of glucose metabolism, is a key regulator of the affinity of haemoglobin for oxygen, and accessory enzymes are also active for the synthesis of glutathione, disposal of oxygen free radicals, and for nucleotide metabolism. With the exception of heavy metal poisoning and rare cases of myelodysplasia, most red cell enzyme deficiency disorders are inherited. They may cause haematological abnormalities, (most commonly nonspherocytic haemolytic anaemias, but also rarely polycythaemia or methaemoglobinaemia, manifest with autosomal recessive or sex-linked inheritance), and may also be associated with nonhaematological disease when the defective enzyme is expressed throughout the body. Some may mirror important metabolic disorders, without producing haematological problems, making them of diagnostic value. Others are of no known clinical consequence. With rare exceptions, it is impossible to differentiate the enzymatic defects from one another by clinical or routine laboratory methods. Diagnosis depends on the combination of (1) accurate ascertainment of the family history; (2) morphological observations—these can determine whether haemolysis is present, rule out some causes of haemolysis (e.g. hereditary spherocytosis and other red blood cell membrane disorders), and diagnose pyrimidine 5′-nucleotidase deficiency (prominent red cell stippling); (3) estimation of red cell enzyme activity; and (4) molecular analysis. The most common red cell enzyme defects are glucose-6-phosphate dehydrogenase deficiency, pyruvate kinase deficiency, glucose-6-phosphate isomerase deficiency, pyrimidine 5′-nucleotidase deficiency—which may also induced by exposure to environmental lead—and triosephosphate isomerase deficiency.


Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 827-830 ◽  
Author(s):  
EF Jr Roth ◽  
S Schulman ◽  
J Vanderberg ◽  
J Olson

Abstract Plasmodium falciparum-infected human red cells possess at least two pathways for the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH): (1) the glucose-6-phosphate dehydrogenase (G6PD) pathway and (2) the glutamate dehydrogenase (GD) pathway using glutamate as a substrate. Uninfected erythrocytes lack the GD pathway. The NADPH generated can be used to reduce oxidized glutathione (GSSG), which accumulates in the presence of an oxidative stress. In red cell G6PD deficiency, this pathway is reduced or absent, and the host cells as well as the parasites within them are vulnerable to oxidant stress. In view of the presence of the GD pathway in parasitized red cells and the recent description of a parasite-derived G6PD enzyme, we have asked whether the pathways for the reduction of GSSG provided by the parasite can substitute for the host G6PD in red cells deficient in G6PD activity. We have devised a functional assay in which the reduction rate of GSSG is monitored in the presence of buffered infected or control red cell lysates and substrates. Infected G6PD-deficient erythrocytes were obtained from in vitro cultures after a single prior growth cycle of the parasites in G6PD deficient cells to eliminate contaminating normal red cells. The results show that only parasitized red cells can reduce GSSG via the GD pathway. In parasitized G6PD Mediterranean red cells (completely G6PD-deficient), there is a detectable GSSG reduction via the G6PD pathway, not found in uninfected lysates from the same individual. In G6PD A- (African type, featuring partial deficiency), a small increment in the G6PD-dependent reduction of GSSG can also be detected. However, when compared to G6PD normal red cells, the activities from the parasite-derived pathways are small and could not be considered substitutes for normal host enzyme activity. It is concluded that while the plasmodium provides additional pathways for the generation of NADPH that may serve its own metabolic needs, the host red cells and hence the parasite itself remain vulnerable to oxidant stress.


Blood ◽  
1979 ◽  
Vol 53 (6) ◽  
pp. 1121-1132 ◽  
Author(s):  
JJ Edwards ◽  
NG Anderson ◽  
SL Nance ◽  
NL Anderson

Abstract Human erythrocyte lysate proteins were resolved into over 250 discrete spots by two-dimensional electrophoresis using isoelectric focusing in the first dimension and electrophoresis in the presence of sodium dodecyl sulfate, (SDS) in the second. The overwhelming excess of hemoglobin has made such analyses difficult in the past. However, with the ISO-DALT two-dimensional electrophoresis system, large numbers of red cell proteins can be mapped in the presence of hemoglobin. When hemoglobin and several other major proteins are removed by adsorption to DEAE-cellulose, additional minor components are seen, giving a total of over 275. With the use of purified preparations, the map positions of five cell enzymes or their subunits were determined: pyruvate kinase, catalase, glucose-6-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, and carbonic anhydrase. The mapping techniques described complement and extend those traditionally used to find human red cell protein variants.


1980 ◽  
Vol 14 (12) ◽  
pp. 1349-1352 ◽  
Author(s):  
Susan F Travis ◽  
Savitri P Kumar ◽  
Pedro C Paez ◽  
Maria Delivoria-Papadopoulos

Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Josef T. Prchal ◽  
Xylina T. Gregg

Abstract Mutations leading to red cell enzyme deficiencies can be associated with diverse phenotypes that range from hemolytic anemia, methemoglobinemia, polycythemia, and neurological and developmental abnormalities. While most of these mutations occur sporadically, some such as common glucose-6-phosphate dehydrogenase (G6PD) mutants are endemic and rarely cause disease. Common G6PD mutants likely reached their prevalence because they provide some protection against severe malarial complications. In this review G6PD, pyruvate kinase, 5′ nucleotidase, and cytochrome b5 reductase deficiencies will be discussed in greater detail. Limitations of commonly used screening tests for detection of these disorders will also be emphasized, as well as emerging knowledge about non-enzymatic function of the glycolytic enzymes.


Sign in / Sign up

Export Citation Format

Share Document