dimensional electrophoresis
Recently Published Documents


TOTAL DOCUMENTS

1549
(FIVE YEARS 61)

H-INDEX

87
(FIVE YEARS 3)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Agnieszka Niedziela ◽  
Lucyna Domżalska ◽  
Wioletta M. Dynkowska ◽  
Markéta Pernisová ◽  
Krystyna Rybka

Triticale is a wheat–rye hybrid with a higher abiotic stress tolerance than wheat and is better adapted for cultivation in light-type soils, where aluminum ions are present as Al-complexes that are harmful to plants. The roots are the first plant organs to contact these ions and the inhibition of root growth is one of the first plant reactions. The proteomes of the root apices in Al-tolerant and -sensitive plants were investigated to compare their regeneration effects following stress. The materials used in this study consisted of seedlings of three triticale lines differing in Al3+ tolerance, first subjected to aluminum ion stress and then recovered. Two-dimensional electrophoresis (2-DE) was used for seedling root protein separation followed by differential spot analysis using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS/MS). The plants’ tolerance to the stress was evaluated based on biometric screening of seedling root regrowth upon regeneration. Our results suggest that the Al-tolerant genotype can recover, without differentiation of proteome profiles, after stress relief, contrary to Al-sensitive genotypes that maintain the proteome modifications caused by unfavorable environments.


2022 ◽  
Vol 6 (4) ◽  
pp. 320-327
Author(s):  
A. G. Akhremko ◽  
E. S. Vetrova

The production of high-quality pork is closely related to the growth and development of muscle tissue. The present article provides a comparative proteomic research of l. dorsi, b. femoris, m. brachiocephalicus during the pigs’ growth and development (at age of 60 days and 180 days). This work was supported by data of electrophoretic methods: one-dimensional electrophoresis according to Laemmli with densitometric assessment in the ImageJ software and two-dimensional electrophoresis according to O’Farrell method with its further processing on the software ImageMaster. The mass spectrometric identification was conducted with the help of the high-performance liquid chromatography (HPLC) system connected to a mass spectrometer; further the data were interpreted by search algorithm Andromeda. When comparing frequency diagrams of one-dimensional electrophoregrams of all three muscle tissues of weaned pigs, the greatest difference was observed for the muscle sample l. dorsi. Comparison of diagrams of muscle tissue samples taken for mature pigs showed a great similarity of all three studied muscles samples. Within the framework of the research, the Fold indicator was calculated. The exceeding its value by more than 2 units is generally considered to be a statistically significant difference. When analyzing two-dimensional electrophoretograms of weaned pigs’ muscles, 18 protein fractions were revealed with Fold > 2. When examining the muscle tissue of mature pigs, 15 of those proteins were found; the differences were mostly detected in the minor protein fractions. The mass spectrometric analysis of the cut bands with well-pronounced differences from the onedimensional electrophoretogram revealed 214 proteins involved to a greater extent in cellular and metabolic processes, physical activity and localization. Growth and development protein — semaphorin‑6B (96.78 kDa) — was revealed in muscle tissue of l. dorsi, a. Also in l. dorsi and b. femoris the growth and development proteins were found: cadherin‑13 (78.23 kDa), cadherin‑7 (87.01 kDa), the F‑actin-cap protein beta subunit (30.66 kDa), and two uncharacterized proteins at 65.60 kDa and 63.88 kDa.


2021 ◽  
Author(s):  
◽  
Hannah D. Hoang

<p>The goal of this research was to use two-dimensional electrophoresis to examine changes in abundance of enzymes of the glycolytic pathway in the yeast Saccharomyces cerevisiae grown on carbon sources that support either fermentation to ethanol or oxidative metabolism. Large-scale profiling of protein abundances (expression proteomics) often detects changes in protein abundance between physiological states. Such changes in enzyme abundance are often interpreted as evidence of metabolic change although most textbooks emphasise control of enzyme activities not enzyme amount. Two-dimensional difference gel electrophoresis (2DDIGE) was therefore used to examine differences in protein abundance between S. cerevisiae strain BY4741 grown on either glucose (fermentation) or glycerol. Growth on 2% glucose, but not on glycerol, was accompanied by extensive production of ethanol. Doubling times for growth were 2 h 5 min in glucose and 9 h 41 min in glycerol. Conditions for extraction and two-dimensional electrophoresis of proteins were established. One hundred and seventy nine proteins were identified by MALDI mass spectrometry of tryptic digests of protein spots excised from Coomassie stained gels. All of the enzymes for conversion of glucose to ethanol, except for the second enzyme of glycolysis phosphoglucose isomerase, were identified using twodimensional electrophoresis of 100 μg of protein from cells grown on 2% glucose. Identification of proteins excised from the DIGE gels was more challenging, partly because of the lower amount of protein. Eight of the proteins that showed statistically significant differences in abundance (≥ 2-fold, p ≤ 0.01) between glucose and glycerol were identified by mass spectrometry of proteins excised from the 2DDIGE gels, and a further 18 varying proteins were matched to proteins identified from the Coomassie stained gels. Of these total 26 identified or matched proteins, subunits of five of the enzymes for conversion of glucose to ethanol were more abundant from the fermentative cells grown on glucose. The more abundant glycolytic enzymes were phosphofructokinase 2, fructose-1,6-bisphosphate aldolase, triosephosphate isomerase and enolase, plus pyruvate decarboxylase that was required for conversion of the glycolytic product pyruvate to acetaldehyde. The alcohol dehydrogenases Adh1 and Adh4 that convert acetaldehyde to ethanol were detected but did not vary significantly between growth on glucose or glycerol. The results confirmed that in this case changes in abundance of some enzymes were consistent with the altered metabolic output. Future studies should examine whether changes in the abundance and activity of these enzymes are responsible for the differences in metabolism.</p>


2021 ◽  
Author(s):  
◽  
Hannah D. Hoang

<p>The goal of this research was to use two-dimensional electrophoresis to examine changes in abundance of enzymes of the glycolytic pathway in the yeast Saccharomyces cerevisiae grown on carbon sources that support either fermentation to ethanol or oxidative metabolism. Large-scale profiling of protein abundances (expression proteomics) often detects changes in protein abundance between physiological states. Such changes in enzyme abundance are often interpreted as evidence of metabolic change although most textbooks emphasise control of enzyme activities not enzyme amount. Two-dimensional difference gel electrophoresis (2DDIGE) was therefore used to examine differences in protein abundance between S. cerevisiae strain BY4741 grown on either glucose (fermentation) or glycerol. Growth on 2% glucose, but not on glycerol, was accompanied by extensive production of ethanol. Doubling times for growth were 2 h 5 min in glucose and 9 h 41 min in glycerol. Conditions for extraction and two-dimensional electrophoresis of proteins were established. One hundred and seventy nine proteins were identified by MALDI mass spectrometry of tryptic digests of protein spots excised from Coomassie stained gels. All of the enzymes for conversion of glucose to ethanol, except for the second enzyme of glycolysis phosphoglucose isomerase, were identified using twodimensional electrophoresis of 100 μg of protein from cells grown on 2% glucose. Identification of proteins excised from the DIGE gels was more challenging, partly because of the lower amount of protein. Eight of the proteins that showed statistically significant differences in abundance (≥ 2-fold, p ≤ 0.01) between glucose and glycerol were identified by mass spectrometry of proteins excised from the 2DDIGE gels, and a further 18 varying proteins were matched to proteins identified from the Coomassie stained gels. Of these total 26 identified or matched proteins, subunits of five of the enzymes for conversion of glucose to ethanol were more abundant from the fermentative cells grown on glucose. The more abundant glycolytic enzymes were phosphofructokinase 2, fructose-1,6-bisphosphate aldolase, triosephosphate isomerase and enolase, plus pyruvate decarboxylase that was required for conversion of the glycolytic product pyruvate to acetaldehyde. The alcohol dehydrogenases Adh1 and Adh4 that convert acetaldehyde to ethanol were detected but did not vary significantly between growth on glucose or glycerol. The results confirmed that in this case changes in abundance of some enzymes were consistent with the altered metabolic output. Future studies should examine whether changes in the abundance and activity of these enzymes are responsible for the differences in metabolism.</p>


2021 ◽  
Vol 19 (3(75)) ◽  
pp. 21-27
Author(s):  
Andriy V. Semenikhin ◽  
Volodymyr V. Sukhovieiev ◽  
Mykola V. Patyka ◽  
Vasyl S. Lukach

Aim. To isolate and purify protein complexes – ATP synthase and RuBisCO – from pea leaf chloroplasts and study the effect of a microbiological fertilizer “Extracon” and sulfonamide inhibitors acetazolamide and ethoxyzolamide on the enzymatic activity of these proteins.Materials and methods. Chloroplasts were isolated from the leaves of two-week-old pea sprouts, protein complexes of purified thylakoid membranes were solubilized with digitonin (10 mg of digitonin per 1 mg of protein), the protein concentration was determined according to Lowry. Native electrophoresis with displacement of the charge of the soluble protein fraction from the chloroplast stroma, as well as membrane proteins, was carried out in the modified system of Anderson et al., Kolisnichenko et al. A modified Lemmley system was applied to the protein electrophoresis in the polyacrylamide gel in the presence of sodium dodecyl sulfate. The methods of Alain and Hintsik, as well as Gomorrah were used to determine the ATPase activity in the polyacrylamide gel. Visualization of the carbonic anhydrase activity in the polyacrylamide gel was performed by the method of Edwards and Petton. Results and discussion. Using physicochemical methods of potentiometry, spectrophotometry the ATPase, carbonic anhydrase and esterase activities of the enzymes were studied. The results obtained indicate that specific carbonic anhydrase inhibitors (acetazolamide and ethoxyzolamide) also block the esterase and ATPase activity of the enzyme complexes. “Extracon” (a multifunctional microbiological preparation) almost 1.5 times increases the activity of the enzymes, showing a complex activating effect of the fertilizer on both light and dark reactions of photosynthesis.Conclusions. The method of identification and isolation of RuBisCO and ATP synthase on the basis of two-dimensional electrophoresis and electrophoretic elution has been proposed. It allows determining the presence of certain enzyme activity of complexes at first in SDS plates (express analysis) and further to study the effect of various factors of endogenous and exogenous origin on the enzymatic properties of electrophoretically pure enzymes. The use of two-dimensional electrophoresis as a tool for assessing the impact of various factors of endogenous and exogenous origin on the plant cell and the plant as a whole through constant monitoring of the work and activity of enzyme systems of the plant cell is promising.


2021 ◽  
Vol 854 (1) ◽  
pp. 012001
Author(s):  
V B Krylova ◽  
V T Gustova ◽  
A G Akhremko

Abstract Studies of the qualitative indicators of canned meat in accordance with regulatory documents are carried out on average samples of specimens, but when studying by proteomic methods, such sampling does not allow high-quality separation of protein components due to the high fat content in the product. When two-dimensional electrophoresis was carried out on an average sample, fragments of the main muscle and connective tissue proteins of beef were found in small quantities, but the electrophoretogram was not very informative. A significantly better separation was achieved after removing the fat fraction from the product. When studying broth from canned meat, the largest amount of intensely coloured high-molecular-weight protein fractions with a mass of more than 50 kDa was revealed. The electrophoretogram of the meat pieces showed a wide range of proteins across the entire molecular weight range of the polyacrylamide gel, including major muscle proteins. The study of broth together with meat pieces but after fat removal is optimal for the primary screening of the protein component of canned meat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Natsuko Tamura ◽  
Yasuhiro Maejima ◽  
Yuka Shiheido-Watanabe ◽  
Shun Nakagama ◽  
Mitsuaki Isobe ◽  
...  

AbstractTakayasu arteritis (TAK) is an autoimmune systemic arteritis of unknown etiology. Although a number of investigators have attempted to determine biomarkers for diagnosing TAK, there exist no specific serological markers of this intractable disease. We undertook the exploration of novel serological markers which could be useful for an accurate diagnosis of TAK using an unbiased proteomics approach. The purified plasma samples from untreated patients with TAK and healthy individuals were separated by two-dimensional electrophoresis. The differentially expressed protein spots were detected by gel comparison and identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MS). Next, we validated plasma concentrations of identified proteins by enzyme-linked immunosorbent assay (ELISA). Two-dimensional electrophoresis and numerical analysis revealed 19 spots and 3 spot clusters whose sum of the sample averages was ≥ 0.01, and the average concentrations were ≥ 1.5 times in the patient group compared with the control group. Among them, 10 spots and spot clusters that met the condition of the average spot concentration being 2.5 times more than that in the control group were selected. After processing these spots using MS and conducting MS/MS ion search, we identified 10 proteins: apolipoprotein C-2 (ApoC-2), actin, apolipoprotein A-1, complement C3, kininogen-1, vitronectin, α2-macroglobulin, 14–3–3 protein ζ/δ, complement C4, and inter-α-trypsin inhibitor heavy chain H4 isoform 1 precursor. Finally, ELISA demonstrated that plasma ApoC-2 level was significantly elevated in patients with TAK compared with that in healthy individuals. Thus, ApoC-2 would be a promising candidate biomarker for TAK diagnosis.


Sign in / Sign up

Export Citation Format

Share Document