Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle

Nature ◽  
1980 ◽  
Vol 284 (5754) ◽  
pp. 360-363 ◽  
Author(s):  
Wolfgang Nonner ◽  
Bruce C. Spalding ◽  
Bertil Hille
2013 ◽  
Vol 142 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Tamer M. Gamal El-Din ◽  
Gilbert Q. Martinez ◽  
Jian Payandeh ◽  
Todd Scheuer ◽  
William A. Catterall

Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately −98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.


2016 ◽  
Vol 10 (2) ◽  
pp. 103-126 ◽  
Author(s):  
Sebastian Bauer ◽  
Laurent M. Willems ◽  
Esther Paule ◽  
Christine Petschow ◽  
Johann Philipp Zöllner ◽  
...  

Lacosamide (LCM) is approved for anticonvulsive treatment in focal epilepsy and exhibits its function through the slow inactivation of voltage-gated sodium channels (VGSCs). LCM shows comparable efficacy with other antiepileptic drugs (AEDs) licensed in the last decade: in three randomized placebo-controlled trials, significant median seizure reduction rates of 35.2% for 200 mg/day, 36.4–39% for 400 mg/day and 37.8–40% for 600 mg/day were reported. Likewise, 50% responder rates were 38.3–41.1% for 400 mg/day and 38.1–41.2% for 600 mg/day. Similar rates were reported in post-marketing studies. The main adverse events (AEs) are dizziness, abnormal vision, diplopia and ataxia. Overall, LCM is well tolerated and has no clinically-relevant drug–drug interactions. Due to the drug’s intravenous availability, its use in status epilepticus (SE) is increasing, and the available data are promising.


2020 ◽  
Author(s):  
Franck Potet ◽  
Defne E. Egecioglu ◽  
Paul W. Burridge ◽  
Alfred L. George

ABSTRACTGS-967 and eleclazine (GS-6615) are novel sodium channel inhibitors exhibiting antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current (INaL). Here, we took advantage of a throughput automated electrophysiology platform (SyncroPatch 768PE) to investigate the molecular pharmacology of GS-967 and eleclazine on peak sodium current (INaP) recorded from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We compared GS-967 and eleclazine to the antiarrhythmic drug lidocaine, the prototype INaL inhibitor ranolazine, and the slow inactivation enhancing drug lacosamide. In human induced pluripotent stem cell-derived cardiomyocytes, GS-967 and eleclazine caused a reduction of INaP in a frequency-dependent manner consistent with use-dependent block (UDB). GS-967 and eleclazine had similar efficacy but evoked more potent UDB of INaP (IC50=0.07 and 0.6 μM, respectively) than ranolazine (7.8 μM), lidocaine (133.5 μM) and lacosamide (158.5 μM). In addition, GS-967 and eleclazine exerted more potent effects on slow inactivation and recovery from inactivation compared to the other sodium channel blocking drugs we tested. The greater UDB potency of GS-967 and eleclazine was attributed to the significantly higher association rates (KON) and moderate unbinding rate (KOFF) of these two compounds with sodium channels. We propose that substantial UDB contributes to the observed antiarrhythmic efficacy of GS-967 and eleclazine.SIGNIFICANCE STATEMENTWe investigated the molecular pharmacology of GS-967 and eleclazine on sodium channels in human induced pluripotent stem cell derived cardiomyocytes using a high throughput automated electrophysiology platform. Sodium channel inhibition by GS-967 and eleclazine has unique features including accelerating the onset of slow inactivation and impairing recovery from inactivation. These effects combined with rapid binding and moderate unbinding kinetics explain potent use-dependent block, which we propose contributes to their observed antiarrhythmic efficacy.


Sign in / Sign up

Export Citation Format

Share Document