recovery from inactivation
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 22)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yashad Dongol ◽  
Phil M. Choi ◽  
David T. Wilson ◽  
Norelle L. Daly ◽  
Fernanda C. Cardoso ◽  
...  

Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.


2021 ◽  
Vol 45 (4) ◽  
pp. 702-708
Author(s):  
Olivia Monteiro ◽  
Anand Bhaskar ◽  
Io Nam Wong ◽  
Anna K. M. Ng ◽  
Daniel T. Baptista-Hon

Patch-clamp electrophysiological recordings of neuronal activity require a large amount of space and equipment. The technique is difficult to master and not conducive to demonstration to more than a few medical students. Therefore, neurophysiological education is mostly limited to classroom-based pedagogies such as lectures. However, the demonstration of concepts such as changes in membrane potential and ion channel activity is best achieved with hands-on approaches. This article details an in silico activity suitable for large groups of medical students that demonstrates the key concepts in neurophysiology using the LabAXON simulation software. Learning activities in our practical include 1) measurements of voltage and time parameters of the neuronal action potential and its relationship to the Nernst potentials of Na+ and K+; 2) determination of the stimulus threshold to evoke action potentials; 3) demonstration of the refractory period of an action potential; and 4) voltage-clamp experiments to determine the current-voltage relationship of voltage-gated Na+ and K+ channels and the voltage dependence of, and recovery from, inactivation of voltage-gated Na+ channels. We emphasized the accuracy of quantitative measurements as well as the correct use of units. The level of difficulty of the activity can be altered through different multiple choice questions relating to material introduced in the associated lectures. This practical activity is suitable for different class sizes and is adaptable for delivery with online platforms. Student feedback showed that the students felt the activity helped them consolidate their understanding of the lecture material.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paweorn Angsutararux ◽  
Wandi Zhu ◽  
Taylor L. Voelker ◽  
Jonathan R. Silva

The voltage-gated Na+ channel regulates the initiation and propagation of the action potential in excitable cells. The major cardiac isoform NaV1.5, encoded by SCN5A, comprises a monomer with four homologous repeats (I-IV) that each contain a voltage sensing domain (VSD) and pore domain. In native myocytes, NaV1.5 forms a macromolecular complex with NaVβ subunits and other regulatory proteins within the myocyte membrane to maintain normal cardiac function. Disturbance of the NaV complex may manifest as deadly cardiac arrhythmias. Although SCN5A has long been identified as a gene associated with familial atrial fibrillation (AF) and Brugada Syndrome (BrS), other genetic contributors remain poorly understood. Emerging evidence suggests that mutations in the non-covalently interacting NaVβ1 and NaVβ3 are linked to both AF and BrS. Here, we investigated the molecular pathologies of 8 variants in NaVβ1 and NaVβ3. Our results reveal that NaVβ1 and NaVβ3 variants contribute to AF and BrS disease phenotypes by modulating both NaV1.5 expression and gating properties. Most AF-linked variants in the NaVβ1 subunit do not alter the gating kinetics of the sodium channel, but rather modify the channel expression. In contrast, AF-related NaVβ3 variants directly affect channel gating, altering voltage-dependent activation and the time course of recovery from inactivation via the modulation of VSD activation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ivana A. Souza ◽  
Maria A. Gandini ◽  
Gerald W. Zamponi

AbstractThe CACNA1H gene encodes the α1 subunit of the low voltage-activated Cav3.2 T-type calcium channel, an important regulator of neuronal excitability. Alternative mRNA splicing can generate multiple channel variants with distinct biophysical properties and expression patterns. Two major splice variants, containing or lacking exon 26 (± 26) have been found in different human tissues. In this study, we report splice variant specific effects of a Cav3.2 mutation found in patients with autosomal dominant writer’s cramp, a specific type of focal dystonia. We had previously reported that the R481C missense mutation caused a gain of function effect when expressed in Cav3.2 (+ 26) by accelerating its recovery from inactivation. Here, we show that when the mutation is expressed in the short variant of the channel (− 26), we observe a significant increase in current density when compared to wild-type Cav3.2 (− 26) but the effect on the recovery from inactivation is lost. Our data add to growing evidence that the functional expression of calcium channel mutations depends on which splice variant is being examined.


2021 ◽  
Author(s):  
Mohammad-Reza Ghovanloo ◽  
Mark Estacion ◽  
Peng zhao ◽  
Sulayman Dib-Hajj ◽  
Stephen G Waxman

Cannabigerol (CBG), a non-psychotropic phytocannabinoid, is a precursor for cannabis derivatives, Δ9-tetrahydrocannabinol and cannabidiol (CBD). Like CBD, CBG has been suggested as an analgesic. A previous study reported CBG (10 µM) blocks voltage-gated sodium (Nav) currents in CNS neurons. However, the manner in which CBG inhibits Nav channels, and whether this effect contributes to CBG′s potential analgesic behavior remain unknown. Genetic and functional studies have validated Nav1.7 as an opportune target for analgesic drug development. The efforts to develop therapeutic selective Nav1.7 blockers have been unsuccessful thus far, possibly due to issues in occupancy; drugs have been administered at concentrations many folds above IC50, resulting in loss of isoform-selectivity, and increasing off-target effects. We reasoned that an alternative approach could use compounds possessing 2 important properties: ultra-hydrophobicity and functional selectivity. Hydrophobicity could enhance absorption into neuronal cells especially with local administration. Functional selectivity could reduce the likelihood of side-effects. As CBG is ultra-hydrophobic (cLogD=7.04), we sought to determine whether it also possesses functional selectivity against Nav channels that are expressed in dorsal root ganglion (DRG). We found that CBG is a ~10-fold state-dependent Nav inhibitor (KI-KR: ~2-20 µM) with an average Hill-slope of ~2. We determined that at lower concentrations, CBG predominantly blocks sodium Gmax and slows recovery from inactivation; however, as concentration is increased, CBG also hyperpolarizes Nav inactivation curves. Our modeling and multielectrode array recordings suggest that CBG attenuates DRG excitability, which is likely linked with Nav inhibition. As most Nav1.7 channels are inactivated at DRG resting membrane potential, they are more likely to be inhibited by lower CBG concentrations, suggesting functional selectivity against Nav1.7 compared to other Navs (via Gmax block).


Author(s):  
Gregory C. Amberg ◽  
Ji Yeon Lee ◽  
Sang Don Koh ◽  
Kenton M. Sanders

Transient outward, or "A-type" currents are rapidly inactivating voltage gated potassium currents that operate at negative membrane potentials. A-type currents have not been reported in the gastric fundus, a tonic smooth muscle. We used whole-cell voltage-clamp to identify and characterize A-type currents in smooth muscle cells (SMCs) isolated from murine fundus. A-type currents were robust in these cells with peak amplitudes averaging 1.5nA at 0 mV. Inactivation was rapid with a time constant of 71ms at 0 mV; recovery from inactivation at -80 mV was similarly rapid with a time constant of 75ms. A-type currents in fundus were blocked by 4-aminopyridine (4-AP), flecainide and phrixotoxon-1 (PaTX1). Remaining currents after 4-AP and PaTX1 displayed half-activation potentials that were shifted to more positive potentials and showed incomplete inactivation. Currents after TEA displayed half inactivation at -48.1±1.0 mV. Conventional microelectrode and contractile experiments on intact fundus muscles showed that 4-AP depolarized membrane potential and increased tone under conditions in which enteric neurotransmission was blocked. These data suggest that A-type K+ channels in fundus SMCs are likely active at physiological membrane potentials, and sustained activation of A-type channels contributes to the negative membrane potentials of this tonic smooth muscle. Quantitative analysis of Kv4 expression showed that Kcnd3 was dominantly expressed in fundus SMCs. These data were confirmed by immunohistochemistry which revealed Kv4.3-like immunoreactivity within the tunica muscularis. These observations indicate that Kv4 channels likely form the A-type current in murine fundus SMCs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Krisztina Pesti ◽  
Mátyás C. Földi ◽  
Katalin Zboray ◽  
Adam V. Toth ◽  
Peter Lukacs ◽  
...  

We have developed an automated patch-clamp protocol that allows high information content screening of sodium channel inhibitor compounds. We have observed that individual compounds had their specific signature patterns of inhibition, which were manifested irrespective of the concentration. Our aim in this study was to quantify these properties. Primary biophysical data, such as onset rate, the shift of the half inactivation voltage, or the delay of recovery from inactivation, are concentration-dependent. We wanted to derive compound-specific properties, therefore, we had to neutralize the effect of concentration. This study describes how this is done, and shows how compound-specific properties reflect the mechanism of action, including binding dynamics, cooperativity, and interaction with the membrane phase. We illustrate the method using four well-known sodium channel inhibitor compounds, riluzole, lidocaine, benzocaine, and bupivacaine. Compound-specific biophysical properties may also serve as a basis for deriving parameters for kinetic modeling of drug action. We discuss how knowledge about the mechanism of action may help to predict the frequency-dependence of individual compounds, as well as their potential persistent current component selectivity. The analysis method described in this study, together with the experimental protocol described in the accompanying paper, allows screening for inhibitor compounds with specific kinetic properties, or with specific mechanisms of inhibition.


2021 ◽  
Author(s):  
Luke M. Cowan ◽  
Peter R. Strege ◽  
Radda Rusinova ◽  
Olaf S. Andersen ◽  
Arthur Beyder ◽  
...  

SCN5A-encoded NaV1.5 is a voltage-gated Na+ channel expressed in cardiac myocytes and human gastrointestinal (GI) smooth muscle cells (SMCs). NaV1.5 contributes to electrical excitability in the heart and slow waves in the gut. NaV1.5 is also mechanosensitive, and mechanical force modulates several modes of NaV1.5's voltage-dependent function. NaV1.5 mutations in patients with cardiac arrhythmias and gastrointestinal diseases lead to abnormal mechano- and voltage-sensitivity. Membrane permeable amphipathic drugs that target NaV1.5 in the heart and GI tract alter NaV1.5 mechanosensitivity (MS), suggesting that amphipaths may be a viable therapeutic option for modulating NaV1.5 function. We therefore searched for membrane permeable amphipathic agents that would modulate NaV1.5 MS with minimal effect on NaV1.5 voltage-gating intact to more selectively target mechanosensitivity. We used two methods to assess NaV1.5 MS: (1) membrane suction in cell-attached macroscopic patches and (2) fluid shear stress on whole cells. We tested the effect of capsaicin on NaV1.5 MS by examining macropatch and whole-cell Na+ current parameters with and without force. The pressure- and shear-mediated peak current increase and acceleration were effectively abolished by capsaicin. Capsaicin abolished the mechanosensitive shifts in the voltage-dependence of activation (shear) and inactivation (pressure and shear). Exploring the recovery from inactivation and use-dependent entry into inactivation, we found divergent stimulus-dependent effects that could potentiate or mitigate the effect of capsaicin, suggesting that mechanical stimuli may differentially modulate NaV1.5 MS. We conclude that selective modulation of MS makes capsaicin is a novel modulator of NaV1.5 MS and a promising therapeutic candidate.


2021 ◽  
Author(s):  
Krisztina Pesti ◽  
Matyas C Foldi ◽  
Katalin Zboray ◽  
Adam V Toth ◽  
Peter Lukacs ◽  
...  

We have developed an automated patch-clamp protocol that allows high information content screening of sodium channel inhibitor compounds. We have observed that individual compounds had their specific signature patterns of inhibition, which were manifested irrespective of the concentration. Our aim in this study was to quantify these properties. Primary biophysical data, such as onset rate, the shift of the half inactivation voltage, or the delay of recovery from inactivation, are concentration-dependent. We wanted to derive compound-specific properties, therefore, we had to neutralize the effect of concentration. This study describes how this is done, and shows how compound-specific properties reflect the mechanism of action, including binding dynamics, cooperativity, and interaction with the membrane phase. We illustrate the method using four well-known sodium channel inhibitor compounds, riluzole, lidocaine, benzocaine, and bupivacaine. Compound-specific biophysical properties may also serve as a basis for deriving parameters for kinetic modeling of drug action. We discuss how knowledge about the mechanism of action may help to predict the frequency-dependence of individual compounds, as well as their potential persistent current component selectivity. The analysis method described in this study, together with the experimental protocol described in the accompanying paper, allows screening for inhibitor compounds with specific kinetic properties, or with specific mechanisms of inhibition.


2021 ◽  
Vol 153 (4) ◽  
Author(s):  
Pedro L. Martinez-Espinosa ◽  
Chengtao Yang ◽  
Xiao-Ming Xia ◽  
Christopher J. Lingle

Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.


Sign in / Sign up

Export Citation Format

Share Document