Ecological importance of the Southern Boundary of the Antarctic Circumpolar Current

Nature ◽  
10.1038/33675 ◽  
1998 ◽  
Vol 392 (6677) ◽  
pp. 708-710 ◽  
Author(s):  
Cynthia T. Tynan
2021 ◽  
Vol 7 (24) ◽  
pp. eabf8755
Author(s):  
Kaihe Yamazaki ◽  
Shigeru Aoki ◽  
Katsuro Katsumata ◽  
Daisuke Hirano ◽  
Yoshihiro Nakayama

The southern boundary (SB) of the Antarctic Circumpolar Current, the southernmost extent of the upper overturning circulation, regulates the Antarctic thermal conditions. The SB’s behavior remains unconstrained because it does not have a clear surface signature. Revisited hydrographic data from off East Antarctica indicate full-depth warming from 1996 to 2019, concurrent with an extensive poleward shift of the SB subsurface isotherms (>50 km), which is most prominent at 120°E off the Sabrina Coast. The SB shift is attributable to enhanced upper overturning circulation and a depth-independent frontal shift, generally accounting for 30 and 70%, respectively. Thirty years of oceanographic data corroborate the overall and localized poleward shifts that are likely controlled by continental slope topography. Numerical experiments successfully reproduce this locality and demonstrate its sensitivity to mesoscale processes and wind forcing. The poleward SB shift under intensified westerlies potentially induces multidecadal warming of Antarctic shelf water.


2013 ◽  
Vol 26 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Morgan L. Commins ◽  
Isabelle Ansorge ◽  
Peter G. Ryan

AbstractOceanic fronts are important foraging areas for many top predators, but they also define biogeographical boundaries to animals in the Southern Ocean and play a role in structuring seabird assemblages. Understanding the factors driving patterns in the spatial and temporal distribution of seabirds is important to infer the likely impact of a changing climate. Latitudinal transects south of Africa in two summers indicate that fronts and sea ice extent play key roles in determining seabird assemblages. We observed 37 seabird taxa and found five seabird assemblages. The Subtropical Convergence and pack ice-edge form the strongest biogeographical boundaries, whereas the Sub-Antarctic Front and Antarctic Polar Front are less well defined. As summer progresses, the Southern Antarctic Circumpolar Current Front (the Antarctic Divergence or southern boundary of the Antarctic Circumpolar Current) becomes important, when a distinct seabird assemblage forms north of the retreating sea ice following an influx of great shearwatersPuffinus gravis(O'Reilly), blue petrelsHalobaena caerulea(Gmelin), Kerguelen petrelsLugensa brevirostris(Lesson) and southern fulmarsFulmarus glacialoides(Smith). Seabird assemblages show strong seasonality and are predictable between years. They are structured primarily by latitudinal gradients and secondarily by seasonal variation in sea-surface temperature and ice cover within their latitudinal habitat zones.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


2018 ◽  
Vol 9 ◽  
Author(s):  
Flavia Flaviani ◽  
Declan C. Schroeder ◽  
Karen Lebret ◽  
Cecilia Balestreri ◽  
Andrea C. Highfield ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Luisa F. Dueñas ◽  
Dianne M. Tracey ◽  
Andrew J. Crawford ◽  
Thomas Wilke ◽  
Phil Alderslade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document