Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process

Nature ◽  
2000 ◽  
Vol 408 (6808) ◽  
pp. 89-92 ◽  
Author(s):  
Matthew R. Wallenfang ◽  
Geraldine Seydoux
2018 ◽  
Author(s):  
Raphaela Geßele ◽  
Jacob Halatek ◽  
Laeschkir Würthner ◽  
Erwin Frey

AbstractIn the Caenorhabditis elegans zygote, PAR protein patterns, driven by mutual anatagonism, determine the anterior-posterior axis and facilitate the redistribution of proteins for the first cell division. Yet, the factors that determine the selection of the polarity axis remain unclear. We present a reaction-diffusion model in realistic cell geometry, based on biomolecular reactions and accounting for the coupling between membrane and cytosolic dynamics. We find that the kinetics of the phosphorylation-dephosphorylation cycle of PARs and the diffusive protein fluxes from the cytosol towards the membrane are crucial for the robust selection of the anterior-posterior axis for polarisation. The local ratio of membrane surface to cytosolic volume is the main geometric cue that initiates pattern formation, while the choice of the long-axis for polarisation is largely determined by the length of the aPAR-pPAR interface, and mediated by processes that minimise the diffusive fluxes of PAR proteins between cytosol and membrane.


2010 ◽  
Vol 344 (2) ◽  
pp. 992-1000 ◽  
Author(s):  
Samantha M. Fortin ◽  
Sara L. Marshall ◽  
Eva C. Jaeger ◽  
Pauline E. Greene ◽  
Lauren K. Brady ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3805-3814 ◽  
Author(s):  
M. Epstein ◽  
G. Pillemer ◽  
R. Yelin ◽  
J.K. Yisraeli ◽  
A. Fainsod

Patterning along the anterior-posterior axis takes place during gastrulation and early neurulation. Homeobox genes like Otx-2 and members of the Hox family have been implicated in this process. The caudal genes in Drosophila and C. elegans have been shown to determine posterior fates. In vertebrates, the caudal genes begin their expression during gastrulation and they take up a posterior position. By injecting sense and antisense RNA of the Xenopus caudal gene Xcad-2, we have studied a number of regulatory interactions among homeobox genes along the anterior-posterior axis. Initially, the Xcad-2 and Otx-2 genes are mutually repressed and, by late gastrulation, they mark the posterior- or anterior-most domains of the embryo, respectively. During late gastrulation and neurulation, Xcad-2 plays an additional regulatory function in relation to the Hox genes. Hox genes normally expressed anteriorly are repressed by Xcad-2 overexpression while those normally expressed posteriorly exhibit more anterior expression. The results show that the caudal genes are part of a posterior determining network which during early gastrulation functions in the subdivision of the embryo into anterior head and trunk domains. Later in gastrulation and neurulation these genes play a role in the patterning of the trunk region.


Sign in / Sign up

Export Citation Format

Share Document