scholarly journals Natural killer (NK) activity in peripheral blood lymphocytes of patients with benign and malignant breast disease

1982 ◽  
Vol 46 (4) ◽  
pp. 611-616 ◽  
Author(s):  
D White ◽  
D B Jones ◽  
T Cooke ◽  
N Kirkham
1994 ◽  
Vol 3 (5) ◽  
pp. 341-346
Author(s):  
S. B. Cheknev ◽  
Y. G. Ashmanova ◽  
A. D. Pritsker ◽  
O. L. Latysheva ◽  
F. I. Yershov ◽  
...  

Thein vitroaction of interferon (IFN)-α and IFN-γ from six healthy donors and ten patients with multiple sclerosis (MS) on natural killer (INK) activity of peripheral blood lymphocytes (PBL) was studied in an autologous system. The NK activity of PBL was detected by a cytotoxic test using3H-uridine human erythromyeloblast K562 cells. Autologous IFN-α and IFN-γ did not augment NK activity of PBL from healthy donorsin vitro, whereas in samples from MS patients the IFNs strongly stimulated NK cell cytotoxic function. This stimulation suggests the existence of an inhibitor of regulatory IFN action, that is produced in healthy donors simultaneously with IFN in response to IFN induction, but which is lacking in commercial IFN preparations. The factor-containing supernatants from healthy donors reduced the stimulatory action of autologous IFNs in patients with MS almost until complete blockade. Because this inhibitor was absent in patients with MS, deficiency of an inhibitor of IFN regulatory action in MS could open the way to treatment of this compartment of the immune system.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3239-3244 ◽  
Author(s):  
R Jacobs ◽  
M Stoll ◽  
G Stratmann ◽  
R Leo ◽  
H Link ◽  
...  

Abstract Natural killer (NK) cells are phenotypically defined as lymphocytes expressing the antigens CD56 and mostly CD16 (Fc gamma RIII), but lacking CD3. A small CD3- CD16- CD56+ NK cell subset has been described in normal individuals representing less than 2% of peripheral blood lymphocytes. We analyzed here 70 patients for their reconstitution of the immune system during follow-up after autologous or allogeneic bone marrow transplantation. In 35% of these patients, two different NK cell subsets, namely CD56+dim and CD56+bright cells, were observed. The mean duration of these two subsets after transplant was 4 months. Sixty-five percent of the patients exhibited an increased number of NK cells, but only the typical CD16+ CD56+dim population. The CD56+bright subpopulation represented a particular CD3- CD16- NK subset, with posttransplant frequencies up to 70% of all NK cells and 40% of peripheral blood lymphocytes, respectively. In contrast to normal CD56+dim NK cells, CD56+bright cells coexpressed the activation antigens p75 beta-chain of interleukin-2 receptor (IL-2R), CD2R, and CD26, but were negative for CD16. NK and antibody-dependent cellular cytotoxicity activity of CD56+bright cells was low compared with CD56+dim NK cells. But using IL-2 and interferon gamma, their cytotoxicity could be enhanced even more than in CD56+dim lymphocytes. These different subsets may reflect distinct activation or differentiation steps of NK cells during reconstitution of the immune system. Their differential response to IL-2 may be of functional importance for posttransplant cytokine therapy.


Sign in / Sign up

Export Citation Format

Share Document