scholarly journals Early effects of uranyl nitrate on respiration and K+ transport in rabbit proximal tubule

1989 ◽  
Vol 36 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Hugh R. Brady ◽  
Bruce C. Kone ◽  
Robert M. Brenner ◽  
Steven R. Gullans
1990 ◽  
Vol 258 (5) ◽  
pp. F1181-F1187 ◽  
Author(s):  
H. R. Brady ◽  
B. C. Kone ◽  
M. E. Stromski ◽  
M. L. Zeidel ◽  
G. Giebisch ◽  
...  

Oxygen consumption (QO2) and net K+ transport were studied in rabbit proximal tubule suspensions to define the early effects of cisplatin on proximal tubule function. Cisplatin caused dose-dependent inhibition of QO2, which was delayed in onset. The concentration of cisplatin required for inhibition decreased as the duration of exposure was increased [40-min exposure, threshold concentration of 10(-4) M, inhibitor constant (Ki) of 10(-3) M; 4-h exposure, threshold concentration of 3 X 10(-5) M, Ki of 10(-4) M]. Both ouabain-sensitive and ouabain-insensitive QO2 were reduced, indicating inhibition of all adenosinetriphosphatases, including Na(+)- K(+)-ATPase activity. There was a parallel fall in ouabain-sensitive net K+ transport and cytosolic K+ content, confirming the latter observation. Na(+)-K(+)-ATPase activity was unchanged in cell membranes prepared by hypotonic lysis from cisplatin-treated tubules, indicating an indirect cytosol-dependent mechanism of enzyme inhibition. Nystatin-stimulated QO2 was reduced in cisplatin-treated tubules, excluding inhibition of Na+ entry as the mechanism of injury and suggesting mitochondrial injury. The latter was confirmed by measurement of carbonylcyanide-m-chlorophenylhydrazone (CCCP)-uncoupled QO2 in intact cells and ADP-stimulated (state 3) QO2 in digitonin-permeabilized tubules. Furthermore, by maximally stimulating mitochondrial respiration with CCCP and nystatin, it was possible to demonstrate mitochondrial injury at a time when basal QO2 and K+ transport were apparently normal. These data suggest that mitochondrial injury is a central event in cisplatin toxicity to the proximal tubule.


1986 ◽  
Vol 250 (4) ◽  
pp. F680-F689 ◽  
Author(s):  
K. Bomsztyk ◽  
F. S. Wright

The effects of changes in transepithelial water flux (Jv) on sodium, chloride, calcium, and potassium transport by the proximal convoluted tubule were examined by applying a microperfusion technique to surface segments in kidneys of anesthetized rats. Perfusion solutions were prepared with ion concentrations similar to those in fluid normally present in the later parts of the proximal tubule. Osmolality of the perfusate was adjusted with mannitol. With no mannitol in the perfusates, net fluid absorption was observed. Addition of increasing amounts of mannitol first reduced Jv to zero and then reversed net fluid flux. At the maximal rates of fluid absorption, net absorption of Na, Cl, Ca, and K was observed. When Jv was reduced to zero, Na, Cl, and Ca absorption were reduced and K entered the lumen. Na, Cl, and Ca secretion occurred in association with the highest rates of net fluid secretion. The lumen-positive transepithelial potential progressively increased as the net fluid flux was reduced to zero and then reversed. The results demonstrate that changes in net water flux can affect Na, Cl, Ca, and K transport by the proximal convoluted tubule of the rat kidney. These changes in net ion fluxes are not entirely accounted for by changes in bulk-phase transepithelial electrochemical gradients.


1997 ◽  
Vol 25 (4) ◽  
pp. 381-389 ◽  
Author(s):  
C. Kim McDonald-Taylor ◽  
Amreek Singh ◽  
Andy Gilman

Author(s):  
J. M. Barrett ◽  
P. M. Heidger

Microbodies have received extensive morphological and cytochemical investigation since they were first described by Rhodin in 1954. To our knowledge, however, all investigations of microbodies and cytoplasmic bodies of rat renal proximal tubule cells have employed immersion fixation. Tisher, et al. have shown convincing evidence of fine structural alteration of microbodies in rhesus monkey kidney following immersion fixation; these alterations were not encountered when in vivo intravascular perfusion was employed. In view of these studies, and the fact that techniques for perfusion fixation have been established specifically for the rat kidney by Maunsbach, it seemed desirable to employ perfusion fixation to study the fine structure and distribution of microbodies and cytoplasmic bodies within the rat renal proximal tubule.


Author(s):  
A. LeFurgey ◽  
P. Ingram ◽  
L.J. Mandel

For quantitative determination of subcellular Ca distribution by electron probe x-ray microanalysis, decreasing (and/or eliminating) the K content of the cell maximizes the ability to accurately separate the overlapping K Kß and Ca Kα peaks in the x-ray spectra. For example, rubidium has been effectively substituted for potassium in smooth muscle cells, thus giving an improvement in calcium measurements. Ouabain, a cardiac glycoside widely used in experimental and clinical applications, inhibits Na-K ATPase at the cell membrane and thus alters the cytoplasmic ion (Na,K) content of target cells. In epithelial cells primarily involved in active transport, such as the proximal tubule of the rabbit kidney, ouabain rapidly (t1/2= 2 mins) causes a decrease2 in intracellular K, but does not change intracellular total or free Ca for up to 30 mins. In the present study we have taken advantage of this effect of ouabain to determine the mitochondrial and cytoplasmic Ca content in freeze-dried cryosections of kidney proximal tubule by electron probe x-ray microanalysis.


2004 ◽  
Vol 171 (4S) ◽  
pp. 296-296
Author(s):  
Michael Straub ◽  
Joséphine Befolo-Elo ◽  
Richard E Hautmann ◽  
Edgar Braendle

Sign in / Sign up

Export Citation Format

Share Document