hydrothermal precipitation
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2994
Author(s):  
Dan-Jae Lin ◽  
Hao-Lian Lin ◽  
Ssu-Meng Haung ◽  
Shih-Ming Liu ◽  
Wen-Cheng Chen

Given their wide range of biomedical applications, hydroxyapatite (HA) nanoparticles are an attractive material widely used in many fields. Therefore, a simple, inexpensive, and stable process for the synthesis of HA nanoparticles is necessary to meet current needs. Herein, we studied HA synthesis assisted by four surfactants, namely cation, anion, non-ionic, and zwitterion templates, to verify the synthesis phase, aspect ratio, morphology, and biocompatibility under different environments (i.e., pH 4 and 9) before and after calcination. Results showed that before calcination, the surfactant-free groups could not produce HA but showed an abundant dicalcium phosphate anhydrous (DCPA) phase at pH 4. Except for the anionic group containing a small amount of DCPA, all surfactant-assistant groups presented single-phase HA in acidic and alkaline environments. The diameter of HA synthesized at pH 4 was significantly larger than that of HA synthesized at pH 9, and the effect of aspect ratio changes after calcination was more significant than that before calcination. The uncalcined rod-shaped HA synthesized with a non-ionic template at pH 4 demonstrated excellent cell viability, whereas anionic, cationic, and non-ionic surfactants exhibited biocompatibility only after calcination. At pH 9, non-ionic and uncalcined zwitterion-assisted rod-shaped HA showed excellent biocompatibility. In conclusion, the uncalcined HA rod-shaped nanoparticles synthesized from the non-ionic template at pH 4 and 9 and the zwitterion template at pH 9, as well as all surfactant-assisted HA after calcination, had no cytotoxicity. These tailor-made non-toxic HA types can meet the different requirements of apatite composite materials in biomedical applications.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 892
Author(s):  
Luyao Wang ◽  
Nannan Xue ◽  
Yimin Zhang ◽  
Pengcheng Hu

During the acid leaching process of black shale, with the destruction of the aluminosilicate mineral structure, a large amount of aluminum (Al) is leached, accompanied by the release of vanadium (V). To separate aluminum from the vanadium-containing solution, the precipitation behavior of aluminum ions (Al3+) was investigated under hydrothermal conditions with the formation of alunite and natroalunite. In the solution environment, alunite and natroalunite are able to form stably by the Al3+ hydrolysis precipitation process at a temperature of 200 °C, a pH value of 0.4 and a reaction time of 5 h. When Al3+ was precipitated at a K/Al molar ratio of 1, the aluminum precipitation efficiency and the vanadium precipitation efficiency were 64.77% and 1.72%, respectively. However, when Al3+ was precipitated at a Na/Al molar ratio of 1, the precipitation efficiency of the aluminum decreased to 48.71% and the vanadium precipitation efficiency increased to 4.36%. The thermodynamics and kinetics results showed that alunite forms more easily than natroalunite, and the reaction rate increases with increasing temperature, and the precipitation is controlled by the chemical reaction. Vanadium loss increases as the pH value increases. It can be deduced that the ion state of tetravalent vanadium (VO2+) was transformed into the ion state of pentavalent vanadium (VO2+) in the hydrothermal environment. The VO2+ can be adsorbed on the alunite or natroalunite as a result of their negative surface charges, ultimately leading to vanadium loss.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 975
Author(s):  
Kirill Karimov ◽  
Denis Rogozhnikov ◽  
Oleg Dizer ◽  
Maksim Tretiak ◽  
Sergey Mamyachenkov ◽  
...  

The processing of low-grade polymetallic materials, such as copper–zinc, copper–lead–zinc, and poor arsenic-containing copper concentrates using hydrometallurgical methods is becoming increasingly important due to the depletion of rich and easily extracted mineral resources, as well as due to the need to reduce harmful emissions from metallurgy, especially given the high content of arsenic in ores. Ferric arsenates obtained through hydrothermal precipitation are the least soluble and most stable form of arsenic, which is essential for its disposal. This paper describes the investigation of the oxidation kinetics of As (III) ions to As (V) which is required for efficient purification of the resulting solutions and precipitation of low-solubility ferric arsenates. The effect of temperature (160–200 °C), the initial concentration of Fe (II) (3.6–89.5 mmol/dm3), Cu (II) (6.3–62.9 of mmol/dm3) and the oxygen pressure (0.2–0.5 MPa) on the oxidation efficiency of As (III) to As (V) was studied. As (III) oxidation in H3AsO-Fe2+-Cu2+-H2SO4 and H3AsO-Fe2+-H2SO4 systems was controlled by a chemical reaction with the apparent activation energy (Ea (≈84.3–86.3 kJ/mol)). The increase in the concentration of Fe (II) ions and addition of an external catalyst (Cu (II) ions) both have a positive effect on the process. When Cu (II) ions are introduced into the solution, their catalytic effect is confirmed by a decrease in the partial orders, Fe (II) ions concentration from 0.43 to 0.20, and the oxygen pressure from 0.95 to 0.69. The revealed catalytic effect is associated with a positive effect of Cu (II) ions on the oxidation of Fe (II) to Fe (III) ions, which further participate in As (III) oxidation. The semi-empirical equations describing the reaction rate under the studied conditions are written.


2020 ◽  
Vol 82 (9) ◽  
pp. 1912-1920
Author(s):  
Nuray Güy ◽  
Keziban Atacan ◽  
Belgassim Boutra ◽  
Mahmut Özacar

Abstract The formation of heterojunction structures of semiconductors is one of the most important techniques to increase the photocatalytic efficiency of a photocatalyst. In this paper, Ag/Ag3VO4/TiO2 as a visible light response photocatalyst was prepared easily by a three step process including hydrothermal, precipitation and photoreduction. The Ag/Ag3VO4/TiO2 nanocomposites demonstrated clearly increased visible light absorption and photocatalytic efficiency in degradation of Rhodamine B. The degradation yield of Rhodamine B was detected 97.3% in 45 min under visible light. Compared with Ag3VO4, TiO2 and Ag3VO4/TiO2, Ag/Ag3VO4/TiO2 exhibited the highest efficiency owing to synergetic effect between Ag3VO4 and TiO2 and surface plasmon resonance effect of Ag nanoparticles. So, the Ag/Ag3VO4/TiO2 can be effectively used as an active photocatalyst under visible light and it depicts an ideal potential in elimination organic pollutants.


2020 ◽  
Vol 31 (3) ◽  
pp. 1290-1301 ◽  
Author(s):  
Qikun Wang ◽  
Yongqing Wang ◽  
Kun Liu ◽  
Jianlei Liu ◽  
Chao Wang ◽  
...  

2018 ◽  
Vol 33 (4) ◽  
pp. 287-297 ◽  
Author(s):  
Kristina M. Peterson ◽  
Peter J. Heaney ◽  
Jeffrey E. Post

Synchrotron X-ray diffraction was used to monitor the hydrothermal precipitation of akaganeite (β-FeOOH) and its transformation to hematite (Fe2O3) in situ. Akaganeite was the first phase to form and hematite was the final phase in our experiments with temperatures between 150 and 200 °C. Akaganeite was the only phase that formed at 100 °C. Rietveld analyses revealed that the akaganeite unit-cell volume contracted until the onset of dissolution, and subsequently expanded. This reversal at the onset of dissolution was associated with a substantial and rapid increase in occupancy of the Cl site, perhaps by OH− or Fe3+. Rietveld analyses supported the incipient formation of an OH-rich, Fe-deficient hematite phase in experiments between 150 and 200 °C. The inferred H concentrations of the first crystals were consistent with “hydrohematite.” With continued crystal growth, the Fe occupancies increased. Contraction in both a- and c-axes signaled the loss of hydroxyl groups and formation of a nearly stoichiometric hematite.


2018 ◽  
Vol 279 ◽  
pp. 99-103
Author(s):  
Ming Han Xu ◽  
Ai Xia Chen ◽  
Rui Hua Wang ◽  
Long Tao Liu ◽  
Zhi Hui Li ◽  
...  

YAG materials has a number of unique properties, the application is very extensive. In this paper, the superfine YAG powder materials were prepared by hydrothermal precipitation method. The influence of synthesis process on the morphology of the powder was investigated. The results showed that when the molar ratio of salt to alkali that Y3+: OH- is 1:8, the more uniform morphology of the particles can be prepared, when the molar ratio of salt to alkali is increased, the morphology of the particles will not change. The reaction time is longer, the particle size will be thicker. The smaller the concentration of Y3+ ions is, the larger the particle size will be small. The experimental results show that the rod-like particles have a poly-crystal structure at the reaction temperature of 200°C, reaction time of 2 days and the molar ratio of salt to alkali of 1:8. The diameter of the rod-like particles is most of the powders have a particle size of 1000 nm and a small amount of powder has a particle size of about 5000 nm. The purity of powder is higher through the test of XRD.


Sign in / Sign up

Export Citation Format

Share Document