scholarly journals Spatial complexity of ice flow across the Antarctic Ice Sheet

2015 ◽  
Vol 8 (11) ◽  
pp. 847-850 ◽  
Author(s):  
Felix S. L. Ng
2014 ◽  
Vol 2 (2) ◽  
pp. 911-933 ◽  
Author(s):  
N. F. Glasser ◽  
S. J. A. Jennings ◽  
M. J. Hambrey ◽  
B. Hubbard

Abstract. Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.


1986 ◽  
Vol 8 ◽  
pp. 124-128 ◽  
Author(s):  
N.F. McIntyre

Mapping the topography of the Antarctic ice sheet has confirmed that there is, typically, a decrease in the wavelength and increase in the amplitude of surface undulations with distance from ice divides. This pattern is distorted by converging ice flow in coastal regions and by other variations in subglacial relief, ice velocity, and viscosity. The near-symmetry of undulations indicates the extent of three-dimensional flow over bedrock peaks. Spectral analyses indicate the greater response of the ice sheet to bedrock features with longer wavelengths. This is affected, and in some cases dominated, by the inhomogeneous and non-isothermal nature of the ice sheet.


Author(s):  
R. Li ◽  
W. Ye ◽  
F. Kong ◽  
G. Qiao ◽  
X. Tong ◽  
...  

The Antarctic ice sheet response to the global climate change, specifically the ice flow speed change of the glaciers, has been investigated by many researchers. However, most research results cover the period since 1970s or after the operation of the LANDSAT series. The availability of the film-based ARGON KH-5 data makes it possible to quantify the changes of the Antarctic ice sheet in 1960s. To meet the challenges of processing the low quality film-based ARGON images, a novel method was developed to allow estimating the ice sheet surface motion and reconstructing the surface model simultaneously from ARGON stereo images by decomposing the total parallaxes to terrain and motion based components. A photogrammetric approach was developed to distinguish stable ice surface features from those on motion and use them for recovering the camera orientation information. Several existing Antarctic mapping products were used to establish the ground control. The ice flow speed field is reconstructed using a hierarchical image matching strategy. Firstly, epipolar images are generated via a fundamental matrix derived from correspondences used in the geometric modelling process, and then an image pyramid is built. Second, the normalized cross-correlation (NCC) technique is conducted on each layer of the pyramid to match the extracted features. Since the images were taken at different times, during which the glacier motion occurred, the measured total parallaxes are decomposed to terrain and motion parallaxes according to given ice flow directions which are derived from the iteratively produced DTM or images. Finally, a speed map and a DTM can be generated at each level of the image pyramid. This process repeats itself. At the bottom of the pyramid the final speed map and DTM are produced at a resolution of about 60m and represent the ice flow field of 1963. This approach was tested using two ARGON stereo-pairs in Rayner glacier in East Antarctica. Both the ice flow speed map and DTM were generated, and their difference with recent products is briefly discussed.


Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1321-1325 ◽  
Author(s):  
Robin E. Bell ◽  
Helene Seroussi

Antarctica contains most of Earth’s fresh water stored in two large ice sheets. The more stable East Antarctic Ice Sheet is larger and older, rests on higher topography, and hides entire mountain ranges and ancient lakes. The less stable West Antarctic Ice Sheet is smaller and younger and was formed on what was once a shallow sea. Recent observations made with several independent satellite measurements demonstrate that several regions of Antarctica are losing mass, flowing faster, and retreating where ice is exposed to warm ocean waters. The Antarctic contribution to sea level rise has reached ~8 millimeters since 1992. In the future, if warming ocean waters and increased surface meltwater trigger faster ice flow, sea level rise will accelerate.


1982 ◽  
Vol 3 ◽  
pp. 42-49 ◽  
Author(s):  
W.F. Budd ◽  
I.N. Smith

A large-scale dynamic numerical model of the Antarctic ice sheet has been developed to study its present state of ice flow and mass balance as well as its response to long-term changes of climate or sea-level.The flow of ice over a two-dimensional grid is determined from the ice thickness, the basal shear stress, the bedrock depth, and ice flow parameters derived from velocities of existing ice sheets. The change in ice thickness with time is governed by the continuity equation involving the ice flux divergence and the ice accumulation or ablation. At the ice sheet seaward boundary, a floating criterion and floating ice thinning rate apply. Bedrock depression with a time-delayed response dependent on the history of the ice load is also included.A 61 × 61 point grid with 100 km spacing has been used to represent the ice-sheet surface, bedrock, and accumulation rate. The model has been used to simul a te the growth of the present ice sheet and i ts reaction to changes of sea-level, bedrock depression, accumulation rate, ice flow parameters, and the iceshelf thinning rate.Preliminary results suggest that the present ice sheet is not in equilibrium but rather is still adjusting to changes of these parameters.


1998 ◽  
Vol 27 ◽  
pp. 1-6 ◽  
Author(s):  
David G. Vaughan ◽  
Jonathan L. Bamber

A digital elevation model (DEM) of the surface of the Antarctic ice sheet is compared with a simple two-dimensional ice-flow model to illuminate gross distortions (>500 m) of the ice-surface elevation. We use a DEM derived from ERS-1 satellite altimetry, airborne data and TWERLE balloon data. This is compared with an ice-sheet elevation model generated by applying theoretical surface elevations, calculated for two-dimensional ice flow, to isolines of distance from the grounding line (continentality). The model is scaled using only one parameter, to match the measured surface elevation at Dome Argus. The model is far from rigorous, violating continuity conditions, ignoring variations in surface mass balance and temperature, and assuming uniform basal conditions. However, the comparison of model and observed surface elevations is illuminating in terms of the behaviour of the ice sheet at a continental scale. Across the ice sheet the rms difference between modelled elevation and the DEM is around 300 m, but much of this results from isolated areas of much greater disagreement. We ascribe these gross differences to the effects of basal conditions. in four areas, the observed surface is more than 500 m higher than the modelled surface. Most of these are immediately upstream of substantial areas of rock outcrop and are caused by the damming effect of these mountain ranges. in nine areas, the measured surface is more than 500 m lower than predicted. Eight of these areas, in West Antarctica and the Lambert Glacier basin, are associated with suspected areas of basal sliding. The ninth is an area of 250 000 km2 in East Antarctica not previously noted as having unusual flow characteristics, but for which very few-data exist. We speculate that this area results from unusual basal conditions resulting in a low-profile ice sheet. A low-profile ice sheet of this size with in the East Antarctic ice sheet indicates that basal conditions are perhaps more variable than previously thought.


2021 ◽  
Author(s):  
Catherine Ritz ◽  
Christophe Dumas ◽  
Marion Leduc-Leballeur ◽  
Giovanni Macelloni ◽  
Ghislain Picard ◽  
...  

<p><span>Ice temperature within the ice is a crucial characteristic to understand the Antarctic ice sheet evolution because temperature is coupled to ice flow. Since temperature is only measured at few locations in deep boreholes, we only rely on numerical modelling to assess ice sheet-wide temperature. However, the design of such models leads to a number of challenges. One important difficulty is that the temperature field strongly depends on the geothermal flux which is still poorly known (see White paper by Burton-Johnson and others,2020 </span><span></span><span>). Another point is that up to now there is no fully suitable model, especially for inverse approaches: i</span><span>)</span><span> analytical solutions are only valid in slowly flowing regions; ii</span><span>)</span><span> models solving only the heat equation by prescribing geometry and ice flow do not take into account the past changes in ice thickness and ice flow and </span><span>do not couple </span><span>ice flow and temperature. Conversely, 3D thermomechanical models that simulate the evolution of the ice sheet take into account all the relevant processes but they are too computationally expensive to be used in inverse approaches. Moreover, they do not provide a perfect fit between observed and simulated geometry </span><span>(ice thickness, surface elevation) </span><span>for the present-day ice sheets </span><span>and this affects the simulated temperature field</span><span>.</span></p><p><span>GRISLI (Quiquet et al. 2018), belongs to this family of thermomechanically coupled ice sheet models An emulator, based on deep neural network (DNN), has been developed in order to speed-up the simulation of present-day ice temperature. We use GRISLI outputs that come from 4 simulations, each covers 900000 years (8 glacial-interglacial cycles) to get rid of the initial configuration influence. The simulations differ by the geothermal flux map used as boundary condition. Finally a database is built where each ice column for each simulation is a sample used to train the DNN. For each sample, the input layer (precursor) is a vector of the present-day characteristics: ice thickness, surface temperature, geothermal flux, accumulation rate, surface velocity and surface slope. The predicted output (output layer) is the vertical profile of temperature. In the training, the weights of the network are optimized by comparison with the GRISLI temperature. </span></p><p><span>The first results are very encouraging with a RMSE of ~ 0.6 °C (calculated from the difference between the emulated temperatures and GRISLI temperatures over all the samples and all the depths). Once trained, the computational time of GRISLI-DNN for generating temperature field of whole Antarctica (16000 columns) is about 20 s.</span></p><p><span>The first application (in the framework of the ESA project 4D-Antarctica, see Leduc-Leballeur<span> presentation in this session</span>) will be to use this emulator associated with SMOS satellite observations to infer the 3D temperature field and improve our knowledge of geothermal flux. Indeed, it has been shown that SMOS data, coupled with glaciological and electromagnetic models, give an indication of temperature in the upper 1000 m of the ice sheet. Our emulator could also be used for initialization of computationally expensive ice sheet models.</span></p>


1998 ◽  
Vol 27 ◽  
pp. 1-6 ◽  
Author(s):  
David G. Vaughan ◽  
Jonathan L. Bamber

A digital elevation model (DEM) of the surface of the Antarctic ice sheet is compared with a simple two-dimensional ice-flow model to illuminate gross distortions (>500 m) of the ice-surface elevation. We use a DEM derived from ERS-1 satellite altimetry, airborne data and TWERLE balloon data. This is compared with an ice-sheet elevation model generated by applying theoretical surface elevations, calculated for two-dimensional ice flow, to isolines of distance from the grounding line (continentality). The model is scaled using only one parameter, to match the measured surface elevation at Dome Argus. The model is far from rigorous, violating continuity conditions, ignoring variations in surface mass balance and temperature, and assuming uniform basal conditions. However, the comparison of model and observed surface elevations is illuminating in terms of the behaviour of the ice sheet at a continental scale. Across the ice sheet the rms difference between modelled elevation and the DEM is around 300 m, but much of this results from isolated areas of much greater disagreement. We ascribe these gross differences to the effects of basal conditions. in four areas, the observed surface is more than 500 m higher than the modelled surface. Most of these are immediately upstream of substantial areas of rock outcrop and are caused by the damming effect of these mountain ranges. in nine areas, the measured surface is more than 500 m lower than predicted. Eight of these areas, in West Antarctica and the Lambert Glacier basin, are associated with suspected areas of basal sliding. The ninth is an area of 250 000 km2 in East Antarctica not previously noted as having unusual flow characteristics, but for which very few-data exist. We speculate that this area results from unusual basal conditions resulting in a low-profile ice sheet. A low-profile ice sheet of this size with in the East Antarctic ice sheet indicates that basal conditions are perhaps more variable than previously thought.


2015 ◽  
Vol 3 (2) ◽  
pp. 239-249 ◽  
Author(s):  
N. F. Glasser ◽  
S. J. A. Jennings ◽  
M. J. Hambrey ◽  
B. Hubbard

Abstract. Longitudinal ice-surface structures in the Antarctic Ice Sheet can be traced continuously down-ice for distances of up to 1200 km. A map of the distribution of ~ 3600 of these features, compiled from satellite images, shows that they mirror the location of fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of metres per annum and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. They can be traced continuously through crevasse fields and through blue-ice areas, indicating that they represent the surface manifestation of a three-dimensional structure, interpreted as foliation. Flow lines are linear and undeformed for all major flow units described here in the Antarctic Ice Sheet except for the Kamb Ice Stream and the Institute and Möller Ice Stream areas, where areas of flow perturbation are evident. Parcels of ice along individual flow paths on the Lambert Glacier, Recovery Glacier, Byrd Glacier and Pine Island Glacier may reside in the glacier system for ~ 2500 to 18 500 years. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow configuration of the ice sheet may have remained largely unchanged for the last few hundred years, and possibly even longer. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.


2020 ◽  
Vol 14 (9) ◽  
pp. 3033-3070 ◽  
Author(s):  
Hélène Seroussi ◽  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
William H. Lipscomb ◽  
...  

Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.


Sign in / Sign up

Export Citation Format

Share Document