Glacial catch: cold loving, radiation-resistant bacteria

Nature India ◽  
2016 ◽  
Author(s):  
Yuna Park ◽  
Soohyun Maeng ◽  
Tuvshinzaya Damdintogtokh ◽  
Jing Zhang ◽  
Min-Kyu Kim ◽  
...  

2013 ◽  
Vol 55 (1) ◽  
pp. 135-140 ◽  
Author(s):  
Li Zhi-Han Yu ◽  
Xue-Song Luo ◽  
Ming Liu ◽  
Qiaoyun Huang

2013 ◽  
Vol 68 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Jae-Jin Lee ◽  
Sathiyaraj Srinivasan ◽  
Sangyong Lim ◽  
Minho Joe ◽  
Sang Hee Lee ◽  
...  

2005 ◽  
Vol 71 (9) ◽  
pp. 5225-5235 ◽  
Author(s):  
Fred A. Rainey ◽  
Keren Ray ◽  
Margarida Ferreira ◽  
Bridget Z. Gatz ◽  
M. Fernanda Nobre ◽  
...  

ABSTRACT The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a 60Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus.


2009 ◽  
Vol 2 ◽  
pp. GEI.S2380 ◽  
Author(s):  
Na Gao ◽  
Bin-Guang Ma ◽  
Yu-Sheng Zhang ◽  
Qin Song ◽  
Ling-Ling Chen ◽  
...  

To investigate the general radiation-resistant mechanisms of bacteria, bioinformatic method was employed to predict highly expressed genes for four radiation-resistant bacteria, i.e. Deinococcus geothermalis ( D. geo), Deinococcus radiodurans ( D. rad), Kineococcus radiotolerans ( K. rad) and Rubrobacter xylanophilus ( R. xyl). It is revealed that most of the three reference gene sets, i.e. ribosomal proteins, transcription factors and major chaperones, are generally highly expressed in the four bacteria. Recombinase A ( recA), a key enzyme in recombinational repair, is predicted to be highly or marginally highly expressed in the four bacteria. However, most proteins associated with other repair systems show low expression levels. Some genes participating in ‘information storage and processing,’ ‘cellular processes and signaling’ and ‘metabolism’ are among the top twenty predicted highly expressed (PHX) genes in the four genomes. Many antioxidant enzymes and proteases are commonly highly expressed in the four bacteria, indicating that these enzymes play important roles in resisting irradiation. Finally, a number of ‘hypothetical genes’ are among the top twenty PHX genes in each genome, some of them might contribute vitally to resist irradiation. Some of the prediction results are supported by experimental evidence. All the above information not only helps to understand the radiation-resistant mechanisms but also provides clues for identifying new radiation-resistant genes from these bacteria.


Author(s):  
Yuna Park ◽  
Soohyun Maeng ◽  
Tuvshinzaya Damdintogtokh ◽  
Minji Bang ◽  
Hyejin Oh ◽  
...  

BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 297 ◽  
Author(s):  
Haïtham Sghaier ◽  
Kaïs Ghedira ◽  
Alia Benkahla ◽  
Insaf Barkallah

Author(s):  
Yuna Park ◽  
Soohyun Maeng ◽  
Tuvshinzaya Damdintogtokh ◽  
Jing Zhang ◽  
Min-Kyu Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document