the taklimakan desert
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 40)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mingjie Ma ◽  
Xinghua Yang ◽  
Qing He ◽  
Ali Mamtimin

Abstract Based on meteorological and dust devil intensification observation data in the desert transition zone of the Xiaotang region in the northern margin of the Taklimakan Desert, and combined with GPS sounding in the hinterland of the Taklimakan Desert, this study investigated the improvement and evaluation of the dust devil parameterization scheme. The results indicate that the thermodynamic efficiency of dust devils after improvement was significantly higher than that before improvement, improving the values by 84.7%, 63.9%, 25.6%, 13.3%, 12.5%, 22.7%, 26.6%, 26.9%, and 21.4% for the hourly intervals from 09:00–17:00, respectively. The annual occurrence of dust devils after improvement was 431 times, 55.2% more than before improvement. The correlation coefficients of convective boundary layer height after improvement was 0.96, higher than that before improvement (0.908). After the improvement, the total annual dust emission time was 181.3 h, 95.9% less than that calculated using the day length before improvement, and 31.8% more than that calculated using sunshine time before improvement. After the improvement, the average vertical dust flux of a single dust devil was 0.25 m2/s, 68.8% less than that before improvement. After the improvement, the average annual dust emission from dust devils per square kilometer was 15.3 t/km2, significantly lower than the value of 320.5 t/km2 before the improvement, approximately one-twentieth of the value.


2021 ◽  
Author(s):  
Wei Zhang ◽  
Liping Cao ◽  
Shengqing Yu ◽  
Xiangling Zhou

Greening on the edge of desert is an effective way to prevent and control desertification. This paper studies the humidity characteristics of sand samples collected from the surface and interior of dunes in the southwestern edge of the Taklimakan Desert, whose geographic coordinates are 39°43’37” – 39°43’41” N, 78°43’02” – 78°43’09” E. The humidity of sand samples at vertical depths under five different surface positions of windward slope bottom, windward slope middle, windward slope top, leeward slope middle and leeward slope bottom was studied. On the surface of the sand at different locations and at the same depth under the surface, the sand humidity is greater closer to the bottom of the slope, for both windward slope and leeward slope. The humidity gradient values on the surface and at different depths on different positions of the dunes are obtained. Finally, recommendations are provided for effective ways to prevent desertification in the desert edge of Kashgar.


2021 ◽  
Vol 35 (6) ◽  
pp. 1074-1090
Author(s):  
Hu Ming ◽  
Minzhong Wang ◽  
Ming Wei ◽  
Yinjun Wang ◽  
Xiaochen Hou ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3288
Author(s):  
Caibian Huang ◽  
Fanjiang Zeng ◽  
Bo Zhang ◽  
Jie Xue ◽  
Shaomin Zhang

Irrigation is the main strategy deployed to improve vegetation establishment, but the effects of increasing water availability on N use strategies in desert shrub species have received little attention. Pot experiments with drought-tolerant shrub Calligonum caput-medusae supplied with water at five field capacities in the range of 30–85% were conducted using local soil at the southern margin of the Taklimakan Desert. We examined the changes in plant biomass, soil N status, and plant N traits, and addressed the relationships between them in four- and seven-month-old saplings and mature shrubs after 28 months. Results showed that the growth of C. caput-medusae was highly responsive to increased soil moisture supply, and strongly depleted the soil available inorganic N pools from 16.7 mg kg−1 to an average of 1.9 mg kg−1, although the total soil N pool increased in all treatments. Enhancement of biomass production by increasing water supply was closely linked to increasing total plant N pool, N use efficiency (NUE), N resorption efficiency (NRE), and proficiency (NRP) in four-month saplings, but that to total plant N pool, NRE, and NRP after 28 months. The well-watered plants had lower N concentrations in senesced branches compared to their counterparts experiencing the two lowest water inputs. The mature shrubs had higher NRE and NRP than saplings and the world mean levels, suggesting a higher N conservation. Structural equation models showed that NRE was largely controlled by senesced branch N concentrations, and indirectly affected by water supply, whereas NRP was mainly determined by water supply. Our results indicated that increasing water availability increased the total N uptake and N resorption from old branches to satisfy the N requirement of C. caput-medusae. The findings lay important groundwork for vegetation establishment in desert ecosystems.


2021 ◽  
Author(s):  
Liu Xinchun ◽  
kang yongde ◽  
Chen Hongna ◽  
Lu Hui

Abstract Near-surface (10 m) wind speed (NWS) plays a crucial role in many areas, including the hydrological cycle, wind energy production, and the dispersion of air pollution. Based on wind speed data from Tazhong and the northern margins of the Taklimakan Desert in Xiaotang in spring, summer, autumn, and winter of 2014 and 2015, statistical methods were applied to determine the characteristics of the diurnal changes in wind speed near the ground and the differences in the wind speed profiles between the two sites. The average wind speed on a sunny day increased slowly with height during the day and rapidly at night. At heights below 4 m the wind speed during the day was higher than at night, whereas at 10 m the wind speed was lower during the day than at night. The semi-empirical theory and Monin-Obukhov (M-O) similarity theory were used to fit the NWS profile in the hinterland of the Tazhong Desert. A logarithmic law was applied to the neutral stratification wind speed profile, and an exponential fitting correlation was used for non-neutral stratification. The more unstable the stratification, the smaller the n. Using M-O similarity theory, the “linear to tens of” law was applied to the near-neutral stratification. According to the measured data, the distribution of φM with stability was obtained. The γm was obtained when the near-surface stratum was stable in the hinterland of Tazhong Desert and the βm was obtained when it was unstable. In summer, γm and βm were 5.84 and 15.1, respectively, while in winter, γm and βm were 1.9 and 27.1, respectively.


2021 ◽  
Vol 21 (15) ◽  
pp. 11669-11687
Author(s):  
Lin Tian ◽  
Lin Chen ◽  
Peng Zhang ◽  
Lei Bi

Abstract. The direct radiative forcing efficiency of dust aerosol (DRFEdust) is an important indicator to measure the climate effect of dust. The DRFEdust is determined by the microphysical properties of dust, which vary with dust source regions. However, there are only sparse in situ measurements of them, such as the distribution of the dust aerosol particle size and the complex refractive index in the main dust source regions. Furthermore, recent studies have shown that the non-spherical effect of the dust particle is not negligible. The DRFEdust is often evaluated by estimating given microphysical properties of the dust aerosols in the radiative transfer model (RTM). However, considerable uncertainties exist due to the complex and variable dust properties, including the complex refractive index and the shape of the dust. The DRFEdust over the Taklimakan Desert and Sahara is derived from the satellite observations in this paper. The advantage of the proposed satellite-based method is that there is no need to consider the microphysical properties of the dust aerosols in estimating the DRFEdust. For comparison, the observed DRFEdust is compared with that simulated by the RTM. The differences in the dust microphysical properties in these two regions and their impacts on DRFEdust are analyzed. The DRFEdust derived from the satellite observation is -39.6±10.0 W m-2τ-1 in March 2019 over Tamanrasset in the Sahara and -48.6±13.7 W m-2τ-1 in April 2019 over Kashi in the Taklimakan Desert. According to the analyses of their microphysical properties and optical properties, the dust aerosols from the Taklimakan Desert (Kashi) scatter strongly. The RTM-simulated results (−41.5 to −47.4 W m-2τ-1 over Kashi and −32.2 to −44.3 W m-2τ-1 over Tamanrasset) are in good agreement with the results estimated by satellite observations. According to previous studies, the results in this paper are proven to be reasonable and reliable. The results also show that the microphysical properties of the dust can significantly influence the DRFEdust. The satellite-derived results can represent the influence of the dust microphysical properties on the DRFEdust, which can also validate the direct radiative effect of the dust aerosol and the DRFEdust derived from the numerical model more directly.


Author(s):  
Fan Yang ◽  
Qing He ◽  
Jianping Huang ◽  
Mamtimin Ali ◽  
Xinghua Yang ◽  
...  

CAPSULEThe Desert Environment and Climate Observation Network (DECON) could promote collaborative research on desert dust-storms, boundary-layer and land-atmosphere interactions to better understand the status and role of the Taklimakan desert.


Sign in / Sign up

Export Citation Format

Share Document