scholarly journals The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke

2012 ◽  
Vol 15 (4) ◽  
pp. 565-573 ◽  
Author(s):  
Long-Jun Wu ◽  
Gongxiong Wu ◽  
M Reza Akhavan Sharif ◽  
Amanda Baker ◽  
Yonghui Jia ◽  
...  
2016 ◽  
Vol 139 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Dai-Shi Tian ◽  
Chun-Yu Li ◽  
Chuan Qin ◽  
Madhuvika Murugan ◽  
Long-Jun Wu ◽  
...  

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Weiguo Li ◽  
Becca Ward ◽  
Mohammed Abdelsaid ◽  
Tianzheng Yu ◽  
Yisang Yoon ◽  
...  

Despite the failure of antioxidant treatments in clinical trials, the undoubted role of reactive oxygen species (ROS) in neurovascular damage after ischemic stroke calls for a more targeted approach. ROS production by microglia, the primary resident immune cells in the brain, is a key event of this process in ischemic stroke. Voltage gated proton channel, Hv1, is localized primarily to microglia and sustains NADPH oxidase activity. Deletion of Hv1 is neuroprotective after permanent middle cerebral artery occlusion (MCAO). We hypothesized that Hv1-mediated microglial ROS generation is also critical for vascular integrity and contributes to reperfusion injury after transient ischemic stroke. The wildtype (WT) and Hv1 knockout (KO) rats (n=4) were subjected to permanent or 3/24 h transient MCAO. The neurological deficiency, infarct, hemorrhagic transformation, and edema ratio were assessed. We found that in both permanent and transient MCAO model, KO rats develop smaller infarct, less vascular injury, edema, and hemorrhagic transformation, resulting in better short-term functional outcome. These results suggest that deletion of microglial Hv1 channel is vasculoprotective after ischemia/reperfusion and the underlying mechanisms need to be further studied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoonhee Kim ◽  
Yoon Bum Lee ◽  
Seung Kuk Bae ◽  
Sung Suk Oh ◽  
Jong-ryul Choi

AbstractPhotochemical thrombosis is a method for the induction of ischemic stroke in the cerebral cortex. It can generate localized ischemic infarcts in the desired region; therefore, it has been actively employed in establishing an ischemic stroke animal model and in vivo assays of diagnostic and therapeutic techniques for stroke. To establish a rabbit ischemic stroke model and overcome the shortcoming of previous studies that were difficult to build a standardized photothrombotic rabbit model, we developed a photochemical thrombosis induction system that can produce consistent brain damage on a specific area. To verify the generation of photothrombotic brain damage using the system, longitudinal magnetic resonance imaging, 2,3,5-triphenyltetrazolium chloride staining, and histological staining were applied. These analytical methods have a high correlation for ischemic infarction and are appropriate for analyzing photothrombotic brain damage in the rabbit brain. The results indicated that the photothrombosis induction system has a main advantage of being accurately controlled a targeted region of photothrombosis and can produce cerebral hemisphere lesions on the target region of the rabbit brain. In conjugation with brain atlas, it can induce photochemical ischemic stroke locally in the part of the brain that is responsible for a particular brain function and the system can be used to develop animal models with degraded specific functions. Also, the photochemical thrombosis induction system and a standardized rabbit ischemic stroke model that uses this system have the potential to be used for verifications of biomedical techniques for ischemic stroke at a preclinical stage in parallel with further performance improvements.


2009 ◽  
Vol 65 ◽  
pp. S73
Author(s):  
Yoshifumi Okochi ◽  
Mari Sasaki ◽  
Yasushi Okamura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document