scholarly journals Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion

2017 ◽  
Vol 12 (9) ◽  
pp. 2014-2028 ◽  
Author(s):  
Xiaoxia Liu ◽  
Alpay Burak Seven ◽  
Junjie Xu ◽  
Victoria Esser ◽  
Lijing Su ◽  
...  
1998 ◽  
Vol 9 (6) ◽  
pp. 1235-1252 ◽  
Author(s):  
Owais Saifee ◽  
Liping Wei ◽  
Michael L. Nonet

We describe the molecular cloning and characterization of theunc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63–64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those ofDrosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 258 ◽  
Author(s):  
Can Wang ◽  
Zhuo Ma ◽  
Dong-Ying Yan ◽  
Chang Liu ◽  
Yu Deng ◽  
...  

Synaptic vesicle fusion is mediated by an assembly of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs), composed of syntaxin 1, soluble NSF-attachment protein (SNAP)-25, and synaptobrevin-2/VAMP-2. Previous studies have suggested that over-exposure to manganese (Mn) could disrupt synaptic vesicle fusion by influencing SNARE complex formation, both in vitro and in vivo. However, the mechanisms underlying this effect remain unclear. Here we employed calpeptin, an inhibitor of calpains, along with a lentivirus vector containing alpha-synuclein (α-Syn) shRNA, to examine whether specific SNAP-25 cleavage and the over-expression of α-Syn disturbed the formation of the SNARE complex in SH-SY5Y cells. After cells were treated with Mn for 24 h, fragments of SNAP-25-N-terminal protein began to appear; however, this effect was reduced in the group of cells which were pre-treated with calpeptin. FM1-43-labeled synaptic vesicle fusion decreased with Mn treatment, which was consistent with the formation of SNARE complexes. The interaction of VAMP-2 and α-Syn increased significantly in normal cells in response to 100 μM Mn treatment, but decreased in LV-α-Syn shRNA cells treated with 100 μM Mn; similar results were observed in terms of the formation of SNARE complexes and FM1-43-labeled synaptic vesicle fusion. Our data suggested that Mn treatment could increase [Ca2+]i, leading to abnormally excessive calpains activity, which disrupted the SNARE complex by cleaving SNAP-25. Our data also provided convincing evidence that Mn could induce the over-expression of α-Syn; when combined with VAMP-2, α-Syn prevented VAMP-2 from joining the SNARE complex cycle.


2002 ◽  
Vol 22 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
Michael F. A. Finley ◽  
Sejal M. Patel ◽  
Daniel V. Madison ◽  
Richard H. Scheller

Neuron ◽  
1995 ◽  
Vol 14 (5) ◽  
pp. 991-998 ◽  
Author(s):  
Yun Kee ◽  
Richard C Lin ◽  
Shu-Chan Hsu ◽  
Richard H Scheller

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100710 ◽  
Author(s):  
Guido A. Zampighi ◽  
Raul Serrano ◽  
Julio L. Vergara

Sign in / Sign up

Export Citation Format

Share Document