attachment protein
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 43)

H-INDEX

66
(FIVE YEARS 4)

mBio ◽  
2022 ◽  
Author(s):  
Jinliang Wang ◽  
Jie Luo ◽  
Zhiyuan Wen ◽  
Xinxin Wang ◽  
Lei Shuai ◽  
...  

Some key mutations of SARS-CoV-2 spike protein, such as D614G and P681R mutations, increase the transmission or pathogenicity by enhancing the cleavage efficacy of spike protein by furin. Loss of the furin cleavage motif of SARS-CoV-2 spike protein reduces the virulence and transmission, suggesting that furin is an attractive antiviral drug target.


2021 ◽  
Author(s):  
Shahan Mamoor

In these brief notes we document work using published microarray data (1, 2) to pioneer integrative transcriptome analysis comparing vulvar carcinoma to its tissue of origin, the vulva. We report the differential expression of NSF attachment protein gamma, encoded by NAPG, in cancer of the vulva. NAPG may be of pertinence to understanding transformation and disease progression in vulvar cancer (3).


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Qixin Chen ◽  
Mingang Hao ◽  
Lei Wang ◽  
Linsen Li ◽  
Yang Chen ◽  
...  

AbstractLysosome–autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes—vesicle-associated membrane protein 8 (VAMP8)—plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.


2021 ◽  
Vol 14 ◽  
Author(s):  
Kurt Hu ◽  
Bhakta Prasad Gaire ◽  
Lalita Subedi ◽  
Awadhesh Arya ◽  
Hironori Teramoto ◽  
...  

A typical neuron consists of a soma, a single axon with numerous nerve terminals, and multiple dendritic trunks with numerous branches. Each of the 100 billion neurons in the brain has on average 7,000 synaptic connections to other neurons. The neuronal endolysosomal compartments for the degradation of axonal and dendritic waste are located in the soma region. That means that all autophagosomal and endosomal cargos from 7,000 synaptic connections must be transported to the soma region for degradation. For that reason, neuronal endolysosomal degradation is an extraordinarily demanding and dynamic event, and thus is highly susceptible to many pathological conditions. Dysfunction in the endolysosomal trafficking pathways occurs in virtually all neurodegenerative diseases. Most lysosomal storage disorders (LSDs) with defects in the endolysosomal system preferentially affect the central nervous system (CNS). Recently, significant progress has been made in understanding the role that the endolysosomal trafficking pathways play after brain ischemia. Brain ischemia damages the membrane fusion machinery co-operated by N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment protein (SNAP), and soluble NSF attachment protein receptors (SNAREs), thus interrupting the membrane-to-membrane fusion between the late endosome and terminal lysosome. This interruption obstructs all incoming traffic. Consequently, both the size and number of endolysosomal structures, autophagosomes, early endosomes, and intra-neuronal protein aggregates are increased extensively in post-ischemic neurons. This cascade of events eventually damages the endolysosomal structures to release hydrolases leading to ischemic brain injury. Gene knockout and selective inhibition of key endolysosomal cathepsins protects the brain from ischemic injury. This review aims to provide an update of the current knowledge, future research directions, and the clinical implications regarding the critical role of the neuronal endolysosomal trafficking pathways in ischemic brain injury.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changwon Kim ◽  
Min Ju Shon ◽  
Sung Hyun Kim ◽  
Gee Sung Eun ◽  
Je-Kyung Ryu ◽  
...  

AbstractFueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luomeng Qian ◽  
Xiaoshan Yang ◽  
Shaohui Li ◽  
Hang Zhao ◽  
Yunge Gao ◽  
...  

AbstractExosomes have been associated with chemoresistance in various cancers, but such a role in ovarian cancer is not yet clear. Here, using in vitro cell-based and in vivo mouse model experiments, we show that downregulation of O-GlcNAcylation, a key post-translational protein modification, promotes exosome secretion. This increases exosome-mediated efflux of cisplatin from cancer cells resulting in chemoresistance. Mechanistically, our data indicate that downregulation of O-GlcNAclation transferase (OGT) reduces O-GlcNAclation of SNAP-23. Notably, O-GlcNAcylation of SNAP-23 is vital for regulating exosome release in ovarian cancer cells. Reduced O-GlcNAclation of SNAP-23 subsequently promotes the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of SNAP-23, VAMP8, and Stx4 proteins. This enhances exosome release causing chemoresistance by increasing the efflux of intracellular cisplatin.


2021 ◽  
Vol 7 (21) ◽  
pp. eabf0659
Author(s):  
Alessandro Moro ◽  
Anne van Nifterick ◽  
Ruud F. Toonen ◽  
Matthijs Verhage

Synaptic vesicles (SVs) release neurotransmitters at specialized active zones, but release sites and organizing principles for the other major secretory pathway, neuropeptide/neuromodulator release from dense-core vesicles (DCVs), remain elusive. We identify dynamins, yeast Vps1 orthologs, as DCV fusion site organizers in mammalian neurons. Genetic or pharmacological inactivation of all three dynamins strongly impaired DCV exocytosis, while SV exocytosis remained unaffected. Wild-type dynamin restored normal exocytosis but not guanosine triphosphatase–deficient or membrane-binding mutants that cause neurodevelopmental syndromes. During prolonged stimulation, repeated use of the same DCV fusion location was impaired in dynamin 1-3 triple knockout neurons. The syntaxin-1 staining efficiency, but not its expression level, was reduced. αSNAP (α–soluble N-ethylmaleimide–sensitive factor attachment protein) expression restored this. We conclude that mammalian dynamins organize DCV fusion sites, downstream of αSNAP, by regulating the equilibrium between fusogenic and non-fusogenic syntaxin-1 promoting its availability for SNARE (SNAP receptor) complex formation and DCV exocytosis.


2021 ◽  
Author(s):  
Luther J. Davis ◽  
Nicholas A. Bright ◽  
James R. Edgar ◽  
Michael D.J. Parkinson ◽  
Lena Wartosch ◽  
...  

To provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered LAMP (lysosome associated membrane protein)-carrier vesicles around multivesicular bodies, as well as the appearance of ‘hourglass’ profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8. We also investigated filamentous tethering between multivesicular bodies and enlarged endolysosomes following depletion of CHMP6 (charged multi-vesicular body protein 6) and provide the first evidence that pore formation commences at the edge of tether arrays, with pore expansion required for full membrane fusion.


2021 ◽  
Author(s):  
Yuta Shirogane ◽  
Ryuichi Takemoto ◽  
Tateki Suzuki ◽  
Tomonori Kameda ◽  
Kinichi Nakashima ◽  
...  

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae, is still an important cause of childhood morbidity and mortality worldwide. MeV usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). The disease is fatal, and no effective therapy is currently available. Although trans-synaptic cell-to-cell transmission is thought to account for MeV propagation in the brain, neurons do not express the known receptors for MeV. Recent studies have shown that hyperfusogenic changes in the MeV fusion (F) protein play a key role in MeV propagation in the brain. However, how such mutant viruses spread in neurons remains unexplained. Here we show that cell adhesion molecule 1 (CADM1, also known as IGSF4A, Necl-2, SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors which enable MeV to cause membrane fusion in cells lacking the known receptors and to spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the envelope. However, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same cell membrane, causing the fusion protein triggering and membrane fusion. Knockdown of CADM1 and CADM2 inhibits syncytium formation and virus transmission between neurons that are both mediated by hyperfusogenic F proteins. Thus, our results unravel the molecular mechanism (receptor-mimicking cis-acting fusion triggering) by which MeV spreads trans-synaptically between neurons, thereby causing SSPE. Importance Measles virus (MeV), an enveloped RNA virus, is the causative agent of measles, which is still an important cause of childhood morbidity and mortality worldwide. Persistent MeV infection in the brain causes a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. However, how MeV spreads in neurons, which are mainly affected in SSPE, remains largely unknown. In this study, we demonstrate that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV spread between neurons. During enveloped virus entry, a cellular receptor generally interacts in trans with the attachment protein on the viral membrane (envelope). Remarkably, CADM1 and CADM2 interact in cis with the MeV attachment protein on the same membrane, triggering the fusion protein and causing membrane fusion, as viral receptors usually do in trans. Careful screening may lead to more examples of such “receptor mimicking cis-acting fusion triggering” in other viruses.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009505
Author(s):  
Fei Liu ◽  
Ji-Peng Li ◽  
Lu-Shen Li ◽  
Qi Liu ◽  
Shan-Wei Li ◽  
...  

The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.


Sign in / Sign up

Export Citation Format

Share Document