scholarly journals Development of enhanced nanocomposite preformed particle gels for conformance control in high-temperature and high-salinity oil reservoirs

2014 ◽  
Vol 46 (5) ◽  
pp. 277-284 ◽  
Author(s):  
Cecilia Durán-Valencia ◽  
Baojun Bai ◽  
Horacio Reyes ◽  
Romina Fajardo-López ◽  
Fernando Barragán-Aroche ◽  
...  
2018 ◽  
Vol 8 (4) ◽  
pp. 1341-1348 ◽  
Author(s):  
Alhasan B. Fuseni ◽  
Abdulkareem M. AlSofi ◽  
Ali H. AlJulaih ◽  
Abdulrahman A. AlAseeri

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Huang Zhiyu ◽  
Lu Hongsheng ◽  
Zhang Tailiang

Abstract In order to enhance oil recovery in high-temperature and high-salinity oil reservoirs, the copolymeric microspheres containing acrylamide (AM), acrylonitrile (AN) and AMPS was synthesized by inverse suspension polymerization. The copolymeric microsphere was very uniform and the size could be changed according to the condition of polymerization. The lab-scale studies showed that the copolymeric microsphere exhibit good salt-tolerance and thermal-stability when immersed in 20×105 mg/L NaCl(or KCl) solution, 7500 mg/L CaCl2 (or MgCl2) solution or 2000 mg/L FeCl3 solution, respectively. The copolymeric microsphere showed satisfactory absorbency rates. The sand-pipes experiments confirmed that the average toughness index was 1.059. It could enhance the oil recovery by about 3% compared with the corresponding irregular copolymeric particle.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Lei Zhang ◽  
Cheng Jing ◽  
Jing Liu ◽  
Khan Nasir

Due to the limited temperature resistance, the deep conformance control technology of using the conventional hydrolyzed polyacrylamide (HPAM) gel failed to enhance oil recovery in high-temperature heterogeneous oil reservoirs. Therefore, it is necessary to develop a gelant with high temperature resistance to meet the demands of increasing oil production and decreasing water cut in high-temperature heterogeneous oil reservoirs. In this paper, a copolymer is first synthesized by the method of inverse emulsion polymerization using 2-acrylamide-2-tetradecyl ethyl sulfonic acid (AMC16S), acrylamide (AM), and acrylic acid (AA). The developed copolymer has a highly branching skeleton and can resist temperature up to 100 °C. And then, a gelant with high temperature resistance and good shear resistance can be formed by mixing a certain proportion of the developed copolymer and polyethyleneimine (PEI). After the controllable gelation, a copolymer gel is formed and the formed gel can maintain the stable performance for a long time in the high-temperature environment. Experimental results show that the developed gelant can be applied in the conformance control of high-temperature heterogeneous oil reservoir.


2021 ◽  
Author(s):  
Lyla Almaskeen ◽  
Abdulkareem AlSofi ◽  
Jinxun Wang ◽  
Ziyad Kaidar

Abstract In naturally fractured reservoirs, conformance control prior to enhanced oil recovery (EOR) application might be essential to ensure optimal contact and sufficient sweep. Recently, few studies investigated combining foams and gels into what is commonly coined as foamed-gels. Foamed-gels have been tested and shown to be potential for some field conditions. Yet, very limited studies were performed for high temperature and high salinity carbonates. Therefore, in this work, we study the potential of foamed-gels for high temperature and high salinity carbonates. The objective is to evaluate the potential of such synergy and to compare its value to the individual processes. For that purpose, in this work, we rely on bulk and core-scale tests. Bulk tests were used for initial screening. Wide range of foam-gel solutions were prepared with different polymer types and polymer concentrations. Test tubes were hand shacked thoroughly to generate foams. Foam heights were then measured from the test tubes. Heights were used to screen foaming agents and to study gelant effects on foamers in terms of foam strength (heights). The effect of foamers on gelation was evaluated through bottle tests. Based on the results, an optimal concentration ratio of gelant to foamer was determined and used in core-scale displacements, to further study the potential of this hybrid foam-gel process. Bulk results suggested that addition of the gelant up to a 4:1 foam to gel concentration ratio resulted in sufficient foam generation in some of the polymer samples. Yet, only two of the foam-gel samples generated a strong gel. Increasing the foamer concentration delayed the gelation time and in some samples, the solution did not gel. Through the coreflooding experiment, resistance factor (RF) and residual resistance factor (RRF) were obtained for different conformance control processes including foam, foam-gel, and gel. Foam-gel injection exhibited higher RF and RRF values than conventional foams. However, conventional gels showed even higher RF and RRF values than foam-gels. Combining two of the most widely used conformance control methods (foams and gels) can strike a balance. Foam-gel may offer a treatment that is deeper and more sustainable than foams and on the other a treatment that is more practical, and lower-cost than gels. Our laboratory results also demonstrate that such synergetic conformance control can be achieved in high salinity and high temperature carbonates with pronounced impact.


2017 ◽  
Author(s):  
Alhasan B. Fuseni ◽  
Ali H. Julaih ◽  
Abdulrahman A. Al-Aseeri ◽  
Abdulkareem M. AlSofi

2020 ◽  
Vol 57 (6) ◽  
pp. 534-539
Author(s):  
Yang Wang ◽  
Jian Wang ◽  
Fenfen Du ◽  
Hongwei Fan ◽  
Xiaoxiang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document