Water-Flooding Fluid Diversion Copolymeric Microsphere Prepared by Inverse Suspension Polymerization

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Huang Zhiyu ◽  
Lu Hongsheng ◽  
Zhang Tailiang

Abstract In order to enhance oil recovery in high-temperature and high-salinity oil reservoirs, the copolymeric microspheres containing acrylamide (AM), acrylonitrile (AN) and AMPS was synthesized by inverse suspension polymerization. The copolymeric microsphere was very uniform and the size could be changed according to the condition of polymerization. The lab-scale studies showed that the copolymeric microsphere exhibit good salt-tolerance and thermal-stability when immersed in 20×105 mg/L NaCl(or KCl) solution, 7500 mg/L CaCl2 (or MgCl2) solution or 2000 mg/L FeCl3 solution, respectively. The copolymeric microsphere showed satisfactory absorbency rates. The sand-pipes experiments confirmed that the average toughness index was 1.059. It could enhance the oil recovery by about 3% compared with the corresponding irregular copolymeric particle.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Dingwei Zhu ◽  
Jichao Zhang ◽  
Yugui Han ◽  
Hongyan Wang ◽  
Yujun Feng

Polymer flooding represents one of the most efficient processes to enhance oil recovery, and partially hydrolyzed polyacrylamide (HPAM) is a widely used oil-displacement agent, but its poor thermal stability, salt tolerance, and mechanical degradation impeded its use in high-temperature and high-salinity oil reservoirs. In this work, a novel viscoelastic surfactant, erucyl dimethyl amidobetaine (EDAB), with improved thermal stability and salinity tolerance, was complexed with HPAM to overcome the deficiencies of HPAM. The HPAM/EDAB hybrid samples were studied in comparison with HPAM and EDAB in synthetic brine regarding their rheological behaviors and core flooding experiments under simulated high-temperature and high-salinity oil reservoir conditions (T: 85°C; total dissolved solids: 32,868 mg/L; [Ca2+] + [Mg2+]: 873 mg/L). It was found that the HPAM/EDAB hybrids exhibited much better heat- and salinity-tolerance and long-term thermal stability than HPAM. Core flooding tests showed that the oil recovery factors of HPAM/EDAB hybrids are between those of HPAM and EDAB. These results are attributed to the synergistic effect between HPAM and EDAB in the hybrid.


2011 ◽  
Vol 306-307 ◽  
pp. 654-657 ◽  
Author(s):  
Yu Wang ◽  
Zhi Yong Lu ◽  
Yu Gui Han ◽  
Yu Jun Feng ◽  
Chong Li Tang

Polymer flooding represents one of the most efficient processes to enhance oil recovery, but the poor thermostability and salt tolerance of the currently-used partially hydrolyzed polyacrylamide (HPAM) impeded its use in high-temperature and high-salinity oil reservoirs. “Smart” thermoviscosifying polymers (TVPs) may overcome the deficiencies of HPAM. Steady and dynamic rheological behaviors against temperature of a novel TVP were examined in this work in comparison with a commercial HPAM polymer. It was found when increasing temperature, both apparent viscosity and elastic modulus increase for TVP aqueous solution, but decrease for HPAM solution. The results indicate that TVP shows some potential to be used in enhancing oil recovery from high-temperature and high-salinity oil reservoirs.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 446 ◽  
Author(s):  
Lei Zhang ◽  
Nasir Khan ◽  
Chunsheng Pu

Due to the strong heterogeneity between the fracture and the matrix in fractured oil reservoirs, injected water is mainly moved forward along the fracture, which results in poor water flooding. Therefore, it is necessary to reduce the water cut and increase oil production by using the conformance control technology. So far, gel particles and partially hydrolyzed polyacrylamide (HPAM)/Cr3+ gel are the most common applications due to their better suitability and low price. However, either of the two alone can only reduce the conductivity of the fracture to a certain extent, which leads to a poor effect. Therefore, to efficiently plug the fracture to enhance oil recovery, a combination of gel particles and the HPAM/Cr3+ system is used by laboratory tests according to their respective advantages. The first step is that the gel particles can compactly and uniformly cover the entire fracture and then the fracture channel is transformed into the gel particles media. This process can enhance the oil recovery to 18.5%. The second step is that a suitable HPAM/Cr3+ system based on the permeability of the gel particles media is injected in the fractured core. Thus, the fracture can be completely plugged and the oil in the matrix of the fractured core can be displaced by water flooding. This process can enhance oil recovery to 10.5%. During the whole process, the oil recovery is increased to 29% by this method. The results show that this principle can provide a new method for the sustainable and efficient development of fractured oil reservoirs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 707 ◽  
Author(s):  
Nanji J. Hadia ◽  
Yeap Hung Ng ◽  
Ludger Paul Stubbs ◽  
Ole Torsæter

The stability of nanoparticles at reservoir conditions is a key for a successful application of nanofluids for any oilfield operations, e.g., enhanced oil recovery (EOR). It has, however, remained a challenge to stabilize nanoparticles under high salinity and high temperature conditions for longer duration (at least months). In this work, we report surface modification of commercial silica nanoparticles by combination of zwitterionic and hydrophilic silanes to improve its stability under high salinity and high temperature conditions. To evaluate thermal stability, static and accelerated stability analyses methods were employed to predict the long-term thermal stability of the nanoparticles in pH range of 4–7. The contact angle measurements were performed on aged sandstone and carbonate rock surfaces to evaluate the ability of the nanoparticles to alter the wettability of the rock surfaces. The results of static stability analysis showed excellent thermal stability in 3.5% NaCl brine and synthetic seawater (SSW) at 60 °C for 1 month. The accelerated stability analysis predicted that the modified nanoparticles could remain stable for at least 6 months. The results of contact angle measurements on neutral-wet Berea, Bentheimer, and Austin Chalk showed that the modified nanoparticles were able to adsorb on these rock surfaces and altered wettability to water-wet. A larger change in contact angle for carbonate surface than in sandstone surface showed that these particles could be more effective in carbonate reservoirs or reservoirs with high carbonate content and help improve oil recovery.


2018 ◽  
Vol 15 (30) ◽  
pp. 380-386
Author(s):  
Y. V. SAVINYKH ◽  
L. D. LANG

Polymer flooding is technologically simple and highly effective method of enhanced oil recovery. The method is based on adding a small amount of polymer in conventional water flooding of oil reservoirs. The increase in viscosity and the reduction of the mobility of injected water are to equalize the displacement front by slowing the moving of water in the highly permeable zones and restricting the formation of water finger. These factors help to increase the sweep efficiency and oil-water displacement efficiency during flooding. Polymer flooding has been used successfully in clastic and carbonate reservoirs, as well as in low-permeability reservoirs such as a fractured basement. However, most of the current polymer gel used for control water flows are decayed by a high content of ions Ca2+ and Mg2+ in formation water or in injected water. Similarly, polymer gels lose their stability at high reservoir temperature (above 70°C). Developing water-soluble polymer, which does not change their rheological properties under high salinity and high temperature (over 100°C), is very important when producing offshore, where sea water is commonly used for flooding (high salinity of 30-40 g/L).


2013 ◽  
Vol 316-317 ◽  
pp. 773-776
Author(s):  
Hong Mei Dou ◽  
Xiu Yu Zhu ◽  
Xiao Wen Shi ◽  
Jian Zhuang Ge ◽  
Yu Zhen Liu

According to low temperature, high salinity, heterogeneous and complex sandstone oil reservoirs in the Qaidam Basin. A novel profile modification agent (PMA) was developed by the author. The microscopic structure of the agent was analyzed by SEM. The PMA of 0.3% has stronger plugging capacity to cores. Its blocking coefficient was larger than 91%, and it was not less than 90% after being flushed with 20PV injected water. In parallel core test the agent could be used to adjust the reservoir permeability and enhance oil recovery substantially. The field test achieved good results.


Sign in / Sign up

Export Citation Format

Share Document