Evaluation of Foam-Gels for Conformance Control in High Temperature High Salinity Carbonates

2021 ◽  
Author(s):  
Lyla Almaskeen ◽  
Abdulkareem AlSofi ◽  
Jinxun Wang ◽  
Ziyad Kaidar

Abstract In naturally fractured reservoirs, conformance control prior to enhanced oil recovery (EOR) application might be essential to ensure optimal contact and sufficient sweep. Recently, few studies investigated combining foams and gels into what is commonly coined as foamed-gels. Foamed-gels have been tested and shown to be potential for some field conditions. Yet, very limited studies were performed for high temperature and high salinity carbonates. Therefore, in this work, we study the potential of foamed-gels for high temperature and high salinity carbonates. The objective is to evaluate the potential of such synergy and to compare its value to the individual processes. For that purpose, in this work, we rely on bulk and core-scale tests. Bulk tests were used for initial screening. Wide range of foam-gel solutions were prepared with different polymer types and polymer concentrations. Test tubes were hand shacked thoroughly to generate foams. Foam heights were then measured from the test tubes. Heights were used to screen foaming agents and to study gelant effects on foamers in terms of foam strength (heights). The effect of foamers on gelation was evaluated through bottle tests. Based on the results, an optimal concentration ratio of gelant to foamer was determined and used in core-scale displacements, to further study the potential of this hybrid foam-gel process. Bulk results suggested that addition of the gelant up to a 4:1 foam to gel concentration ratio resulted in sufficient foam generation in some of the polymer samples. Yet, only two of the foam-gel samples generated a strong gel. Increasing the foamer concentration delayed the gelation time and in some samples, the solution did not gel. Through the coreflooding experiment, resistance factor (RF) and residual resistance factor (RRF) were obtained for different conformance control processes including foam, foam-gel, and gel. Foam-gel injection exhibited higher RF and RRF values than conventional foams. However, conventional gels showed even higher RF and RRF values than foam-gels. Combining two of the most widely used conformance control methods (foams and gels) can strike a balance. Foam-gel may offer a treatment that is deeper and more sustainable than foams and on the other a treatment that is more practical, and lower-cost than gels. Our laboratory results also demonstrate that such synergetic conformance control can be achieved in high salinity and high temperature carbonates with pronounced impact.

2021 ◽  
Author(s):  
Xia Yin ◽  
Tianyi Zhao ◽  
Jie Yi

Abstract The water channeling and excess water production led to the decreasing formation energy in the oilfield. Therefore, the combined flooding with dispersed particle gel (DPG) and surfactant was conducted for conformance control and enhanced oil recovery in a high temperature (100-110°C) high salinity (>2.1×105mg/L) channel reservoir of block X in Tahe oilfield. This paper reports the experimental results and pilot test for the combined flooding in a well group of Block X. In the experiment part, the interfacial tension, emulsifying capacity of the surfactant and the particle size during aging of DPG were measured, then, the conformance control and enhanced oil recovery performance of the combined flooding was evaluated by core flooding experiment. In the pilot test, the geological backgrounds and developing history of the block was introduced. Then, an integrated study of EOR and conformance control performance in the block X are analyzed by real-time monitoring and performance after treatment. In addition, the well selection criteria and flooding optimization were clarified. In this combined flooding, DPG is applied as in-depth conformance control agent to increase the sweep efficiency, and surfactant solution slug following is used for improve the displacement efficiency. The long term stability of DPG for 15 days ensures the efficiency of in-depth conformance control and its size can increase from its original 0.543μm to 35.5μm after aging for 7 days in the 2.17×105mg/L reservoir water and at 110°C. In the optimization, it is found that 0.35% NAC-1+ 0.25% NAC-2 surfactant solution with interfacial tension 3.2×10-2mN/m can form a relatively stable emulsion easily with the dehydrated crude oil. In the double core flooding, the conformance control performance is confirmed by the diversion of fluid after combined flooding and EOR increases by 21.3%. After exploitation of Block X for 14 years, the fast decreasing formation energy due to lack of large bottom water and water fingering resulted in a decreasing production rate and increasing watercut. After combined flooding in Y well group with 1 injector and 3 producers, the average dynamic liquid level, daily production, and tracing agent breakthrough time increased, while the watercut and infectivity index decreased. The distribution rate of injected fluid and real-time monitoring also assured the conformance control performance. The oil production of this well group was increased by over 3000 tons. Upon this throughout study of combined flooding from experiment to case study, adjusting the heterogeneity by DPG combined with increasing displacement efficiency of surfactant enhanced the oil recovery synergistically in this high salinity high temperature reservoir. The criteria for the selection and performance of combined flooding also provides practical experiences and principles for combined flooding.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


2018 ◽  
Vol 8 (4) ◽  
pp. 1341-1348 ◽  
Author(s):  
Alhasan B. Fuseni ◽  
Abdulkareem M. AlSofi ◽  
Ali H. AlJulaih ◽  
Abdulrahman A. AlAseeri

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Huang Zhiyu ◽  
Lu Hongsheng ◽  
Zhang Tailiang

Abstract In order to enhance oil recovery in high-temperature and high-salinity oil reservoirs, the copolymeric microspheres containing acrylamide (AM), acrylonitrile (AN) and AMPS was synthesized by inverse suspension polymerization. The copolymeric microsphere was very uniform and the size could be changed according to the condition of polymerization. The lab-scale studies showed that the copolymeric microsphere exhibit good salt-tolerance and thermal-stability when immersed in 20×105 mg/L NaCl(or KCl) solution, 7500 mg/L CaCl2 (or MgCl2) solution or 2000 mg/L FeCl3 solution, respectively. The copolymeric microsphere showed satisfactory absorbency rates. The sand-pipes experiments confirmed that the average toughness index was 1.059. It could enhance the oil recovery by about 3% compared with the corresponding irregular copolymeric particle.


Sign in / Sign up

Export Citation Format

Share Document