scholarly journals Author Correction: Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis

Author(s):  
Aung Than ◽  
Shaohai Xu ◽  
Ru Li ◽  
Melvin Khee-Shing Leow ◽  
Lei Sun ◽  
...  
Author(s):  
Aung Than ◽  
Shaohai Xu ◽  
Ru Li ◽  
MelvinKhee-Shing Leow ◽  
Lei Sun ◽  
...  

Abstract Brown adipose tissue dissipates energy in the form of heat. Recent studies have shown that adult humans possess both classical brown and beige adipocytes (brown-like adipocytes in white adipose tissue, WAT), and stimulating brown and beige adipocyte formation can be a new avenue to treat obesity. Angiotensin II (AngII) is a peptide hormone that plays important roles in energy metabolism via its angiotensin type 1 or type 2 receptors (AT1R and AT2R). Adipose tissue is a major source of AngII and expresses both types of its receptors, implying the autocrine and paracrine role of AngII in regulating adipose functions and self-remodeling. Here, based on the in vitro studies on primary cultures of mouse white adipocytes, we report that, AT2R activation, either by AngII or AT2R agonist (C21), induces white adipocyte browning, by increasing PPARγ expression, at least in part, via ERK1/2, PI3kinase/Akt and AMPK signaling pathways. It is also found that AngII–AT2R enhances brown adipogenesis. In the in vivo studies on mice, administration of AT1R antagonist (ZD7155) or AT2R agonist (C21) leads to the increase of WAT browning, body temperature and serum adiponectin, as well as the decrease of WAT mass and the serum levels of TNFα, triglycerides and free fatty acids. In addition, AT2R-induced browning effect is also observed in human white adipocytes, as evidenced by the increased UCP1 expression and oxygen consumption. Finally, we provide evidence that AT2R plays important roles in hormone T3-induced white adipose browning. This study, for the first time, reveals the browning and brown adipogenic effects of AT2R and suggests a potential therapeutic target to combat obesity and related metabolic disorders.


Endocrinology ◽  
2008 ◽  
Vol 150 (3) ◽  
pp. 1421-1428 ◽  
Author(s):  
Laurent Yvan-Charvet ◽  
Florence Massiéra ◽  
Noël Lamandé ◽  
Gérard Ailhaud ◽  
Michèle Teboul ◽  
...  

Increased angiotensinogen (AGT) production by white adipose tissue has been related to not only obesity but also hypertension. Several studies have highlighted the importance of the angiotensin II type 2 receptor (AT2) in the regulation of blood pressure and fat mass, but the relevance of this transporter in a physiopathological model of increased AGT production, as it occurs in obesity, has not yet been investigated. We used transgenic mice that display either a deletion of AT2 (AT2 KO), an overexpression of AGT (OVEX), or both compound mutants (KOVEX). Results demonstrated that adipocyte hypertrophy and increased lipogenic gene expression induced by adipose AGT overproduction was rescued by deletion of AT2. In line with AGT overexpression, KOVEX and OVEX mice have similar increased plasma AGT levels. However, KOVEX mice display a higher blood pressure than OVEX mice. In kidney, renin expression was clearly reduced in OVEX mice, and its expression was normalized in KOVEX mice. Taken together, we demonstrated that the loss of AT2 expression was sufficient to rescue obesity induced by adipose tissue AGT overexpression and confirmed the necessary role of AT2 for the onset of obesity in this model. Furthermore, despite a reduction of adipose mass in KOVEX, AT2 deficiency caused increased renin production, further worsening the hypertension caused by AGT overexpression. Angiotensin type 2 receptor shows antihypertensive function but promotes the angiotensin II-mediated fat mass enlargement.


Hypertension ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 1074-1077 ◽  
Author(s):  
Helmy M. Siragy ◽  
Marc de Gasparo ◽  
Robert M. Carey

Hypertension ◽  
2005 ◽  
Vol 45 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Magdalena Gonzalez ◽  
Lorena Lobos ◽  
Felipe Castillo ◽  
Lorna Galleguillos ◽  
Nandy C. Lopez ◽  
...  

Hypertension ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Carmine Savoia ◽  
Rhian M. Touyz ◽  
Massimo Volpe ◽  
Ernesto L. Schiffrin

Author(s):  
Jay S Mishra ◽  
Sathish Kumar

Abstract Preeclampsia is a pregnancy-related hypertensive disorder with unclear mechanisms. While hypersensitivity to angiotensin II via vasoconstrictive angiotensin type-1 receptor (AT1R) is observed in preeclampsia, the importance of vasodilatory angiotensin type-2 receptor (AT2R) in the control of vascular dysfunction is less clear. We assessed whether AT1R, AT2R and eNOS expression is altered in placental vessels of preeclamptic women and tested if ex vivo incubation with AT2R agonist Compound 21 (C21; 1 μM) could restore AT1R, AT2R and eNOS balance. Further, using a rat model of gestational hypertension induced by elevated testosterone, we examined whether C21 (1 μg·kg−1·day−1, oral) could preserve AT1R and AT2R balance and improve blood pressure, uterine artery blood flow, and vascular function. Western blots revealed that AT1R protein level was higher while AT2R and eNOS protein were reduced in preeclamptic placental vessels, and AT2R agonist C21 decreased AT1R and increased AT2R and eNOS protein levels in preeclamptic vessels. In testosterone-dams, blood pressure was higher, and uterine artery blood flow was reduced, and C21 treatment reversed these levels similar to those in controls dams. C21 attenuated the exaggerated Ang II contraction and improved endothelium-dependent vasorelaxation in uterine arteries of testosterone-dams. These C21-mediated vascular effects were associated with decreased AT1R and increased AT2R and eNOS protein levels. C21 also increased serum nitrate/nitrite and bradykinin production in testosterone-dams and attenuated the feto-placental growth restriction. Thus, AT1R upregulation and AT2R downregulation is observed in preeclampsia and testosterone-model, and increasing AT2R activity could help restore AT1R and AT2R balance and improve gestational vascular function.


2011 ◽  
Vol 589 (4) ◽  
pp. 939-951 ◽  
Author(s):  
M. Flores-Muñoz ◽  
N. J. Smith ◽  
C. Haggerty ◽  
G. Milligan ◽  
S. A. Nicklin

Sign in / Sign up

Export Citation Format

Share Document